Sains Malaysiana 50(11)(2021): 3193-3204

http://doi.org/10.17576/jsm-2021-5011-04

 

 

Extracting Crown Morphology with a Low-Cost Mobile LiDAR Scanning System in the Natural Environment

(Mengekstrak Morfologi Silara dengan Sistem Pengimbasan LiDAR Mudah Alih Kos Rendah pada Alam Sekitar Semula Jadi)

 

KAI WANG1, JUN ZHOU2*, WENHAI ZHANG1 & BAOHUA ZHANG1

 

1College of Engineering, Nanjing Agricultural University, Nanjing 210031, China

 

2Jiangsu Province Key Laboratory of Intelligent Agricultural Equipment, Nanjing 210031, China

 

Diserahkan: 16 Ogos 2020/Diterima: 7 Mac 2021

 

ABSTRACT

To meet the demand for intelligent measurements of canopy morphological parameters, a mobile LiDAR scanning system with LiDAR and IMU as the main sensors was constructed. The system uses a LiDAR-IMU tight coupling odometry method to reconstruct a point cloud map of the area surveyed. After using the RANSAC algorithm to remove the map ground, the European clustering algorithm is used for point cloud segmentation. Finally, morphological parameters of the canopy, such as crown height, crown diameter, and crown volume, are extracted using statistical and voxel methods. To verify the algorithm, a total of 43 trees in multiple plots of the campus were tested and compared. The algorithm defined in this study was evaluated with manual measurements as reference, and the morphological parameters of the canopy obtained using the LOAM and LeGO-LOAM algorithms as the basic framework were compared. Experiments show that this method can be used to easily obtain the crown height, crown diameter, and crown volume of the area; the correlation coefficients of these parameters were 0.91, 0.87, and 0.83, respectively. Compared with the LOAM and LeGO-LOAM methods, they were increased by 0.004, 0.12, and 0.13 and 0.07, 0.15, and 0.04, respectively. The test results for this new system are positive and meet the requirements of horticulture and orchard measurements, indicating that it will have significant value as an application.

 

Keywords: Canopy measurement; mobile LiDAR scanning system; point cloud segmentation; tightly-coupled odometry

ABSTRAK

Bagi memenuhi permintaan untuk pengukuran parameter morfologi kanopi yang cerdas, sistem pengimbasan LiDAR mudah alih dengan LiDAR dan IMU sebagai sensor utama telah dibina. Sistem ini menggunakan kaedah odometri gandingan erat LiDAR-IMU untuk menyusun semula peta awan titik kawasan yang dikaji. Setelah menggunakan algoritma RANSAC untuk menghilangkan landasan peta, algoritma pengelompokan Eropah digunakan untuk segmentasi awan titik. Akhirnya, parameter morfologi kanopi, seperti tinggi silara, diameter silara dan isi padu silara, diekstrak menggunakan kaedah statistik dan voksel. Untuk mengesahkan algoritma, sebanyak 43 pokok di beberapa petak kampus diuji dan dibandingkan. Algoritma yang ditentukan dalam kajian ini dinilai dengan pengukuran manual sebagai rujukan dan parameter morfologi kanopi yang diperoleh menggunakan algoritma LOAM dan LeGO-LOAM sebagai kerangka asas dibandingkan. Uji kaji menunjukkan bahawa kaedah ini dapat digunakan untuk mendapatkan ketinggian silara, diameter silara dan isi padu silara dengan mudah; pekali korelasi parameter ini masing-masing 0.91, 0.87 dan 0.83. Berbanding dengan kaedah LOAM dan LeGO-LOAM, mereka masing-masing dinaikkan sebanyak 0.004, 0.12 dan 0.13 dan 0.07, 0.15 dan 0.04. Hasil ujian untuk sistem baru ini adalah positif dan memenuhi syarat pengukuran hortikultur dan kebun yang menunjukkan bahawa ia akan memiliki nilai yang signifikan sebagai aplikasi.

 

Kata kunci: Odometri gandingan erat; pengukuran kanopi; sistem pengimbasan LiDAR mudah alih; titik segmentasi awan

 

RUJUKAN

Agarwal, S., Mierle, K. & Others. 2018. Ceres Solver. http://ceres-solver.org/.

Davison, S., Donoghue, D.N.M. & Galiatsatos, N. 2020. The effect of leaf-on and leaf-off forest canopy conditions on LiDAR derived estimations of forest structural diversity. International Journal of Applied Earth Observation and Geoinformation 92: 102160.

Dong, Y., Li, Y., Li, Y., Li, P. & L, Y. 2018. Tree crown outline point extracting and volume calculation based on improved convex hull algorithm. Engineering of Surveying and Mapping 27: 66-71.

Escolà, A., Martínez-Casasnovas, J.A., Rufat, J., Arnó, J., Arbonés, A., Sebé, F., Pascual, M., Gregorio, E. & Rosell-Polo, J.R. 2016. Mobile terrestrial laser scanner applications in precision fruticulture/horticulture and tools to extract information from canopy point clouds. Precision Agriculture 18: 111-132.

Fan, Z., Feng, Z., Zheng, J., Fan, J., Yan, F. & Qiu, Z. 2015. Tree crown volume calculation and prediction model establishment using cubic lattice method. Transactions of the Chinese Society for Agricultural Machinery 46(3): 321-327.

Hadas, E., Jozkow, G., Walicka, A. & Borkowski, A. 2019. Apple orchard inventory with a LiDAR equipped unmanned aerial system. International Journal of Applied Earth Observation and Geoinformation 82: 101911.

Langning, H. & Xiaoli, Z. 2019. A new method of equiangular sectorial voxelization of single-scan terrestrial laser scanning data and its applications in forest defoliation estimation. ISPRS Journal of Photogrammetry and Remote Sensing 151: 302-312.

Li, Q., Zheng, J., Zhou, H., Zhang, H., Shu, Y. & Xu, B. 2016. Online measurement of tree canopy volume using vehicle-borne 2-D laser scanning. Transactions of the Chinese Society for Agricultural Machinery 47: 310-314.

Pedersen, K., Hulusic, V., Amelidis, P. & Slattery, T. 2020. Spatialised audio in a custom-built openGL-based ear training virtual environment. IEEE Computer Graphics and Applications 4(5): 67-81.

Pfeiffer, A.S., Guevara, J., Cheein, F.A. & Sanz, R. 2018. Mechatronic terrestrial LiDAR for canopy porosity and crown surface estimation. Computers and Electronics in Agriculture 146: 104-113.

Pierzchała, M., Giguère, P. & Astrup, R. 2018. Mapping forests using an unmanned ground vehicle with 3D LiDAR and graph-SLAM. Computers and Electronics in Agriculture 145: 217-225.

Qian, X. & Ye, C. 2014. NCC-RANSAC: A fast plane extraction method for 3-D range data segmentation. IEEE Trans 44(12): 2771-2783.

Qin, T., Li, P. & Shen, S. 2018. Vins-mono: A robust and versatile monocular visual-inertial state estimator. IEEE Transactions on Robotics 34(4): 1004-1020.

Qin, C., Ye, H., Pranata, C.E., Han, J., Zhang, S. & Liu, M. 2020. RLINS: A robocentric lidar-inertial state estimator for robust and efficient navigation. 2020 IEEE International Conference on Robotics and Automation (ICRA). pp. 8899-8906.

Rahul, K., Raheman, H. & Paradkar, V. 2020. Design of a 4 DOF parallel robot arm and the firmware implementation on embedded system to transplant pot seedlings. Artificial Intelligence in Agriculture 4: 172-183.

Rusu, R.B. & Cousins, S. 2011. Point cloud library (pcl). Proceedings of the 2011 IEEE International Conference on Robotics and Automation. pp. 1-4.

Segal, A., Haehnel, D. & Thru, S. 2009. Generalized-ICP. Proceedings of Robotics: Science and Systems 2(4): 435.

Seka, D., Bonny, B.S., Yoboué, A.N., Sié, S.R. & Adopo-Gourène, B.A. 2019. Identification of maize (Zea mays L.) progeny genotypes based on two probabilistic approaches: Logistic regression and naïve Bayes. Artificial Intelligence in Agriculture 1: 9-13.

Shan, T. & Englot, B. 2018. LeGO-LOAM: Lightweight and ground optimized lidar odometry and mapping on variable terrain. IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 4758-4765.

Sun, G., Wang, X., Ding, Y., Lu, W. & Sun, Y. 2019. Remote measurement of apple orchard canopy information using unmanned aerial vehicle photogrammetry. Agronomy 9(11): 744.

Underwood, J.P., Hung, C., Whelan, B. & Sukkarieh, S. 2016. Mapping almond orchard canopy volume, flowers, fruit and yield using lidar and vision sensors. Computers and Electronics in Agriculture 130: 83-96.

Wang, J., Zhang, F., Gao, H. & Lu, C. 2018. Extracting crown structure parameters of individual tree by using ground-based laser scanner. Transactions of the Chinese Society for Agricultural Machinery 49: 200-206.

Ye, H., Chen, Y. & Liu, M. 2019. Tightly coupled 3D lidar inertial odometry and mapping. International Conference on Robotics and Automation (ICRA). pp. 3144-3150.

Zhang, J. & Singh, S. 2016. Low-drift and real-time lidar odometry and mapping. Autonomous Robots 41: 401-416.

Zhang, J. & Singh, S. 2014. LOAM: Lidar odometry and mapping in real-time. Proceedings of the Robotics: Science and Systems 2(9).

Zhou, S., Kang, F., Li, W., Kan, J., Zheng, Y. & He, G. 2019. Extracting diameter at breast height with a handheld mobile LiDAR system in an outdoor environment. Sensors (Basel) 19(14): 3212.

 

*Pengarang untuk surat-menyurat; email: zhoujun@njau.edu.cn

   

 

 

sebelumnya