Sains Malaysiana 50(11)(2021): 3205-3217
http://doi.org/10.17576/jsm-2021-5011-05
Petrography
and Geochemistry of Dolomites of Samanasuk Formation,
Dara Adam Khel Section, Kohat Ranges, Pakistan
(Petrografi dan Geokimia Dolomit Formasi Samanasuk, Bahagian Dara Adam
Khel, Kohat Ranges, Pakistan)
EMAD ULLAH KHAN1,2, ABBAS
ALI NASEEM1* MARYAM SALEEM1,3, FAISAL REHMAN1,
SYED WASEEM SAJJAD1, WAQAR AHMAD4 & TAHIR AZEEM1
1Department of Earth Sciences, Quiad-e-Azam
University Islamabad, Pakistan
2Department of Geology, Abdul Wali Khan University Mardan, KP, Pakistan
3Department of Earth & Environmental Sciences, Bahria University, Islamabad, Pakistan
4Department of Earth & Atmospheric Sciences, University
of Alberta, Canada
Diserahkan: 11 November
2020/Diterima: 8 Mac 2021
ABSTRACT
Replacement dolomite occurs in Jurassic Samanasuk Formation in Dara Adam khel area of Kohat ranges,
North-Western Himalayas, Pakistan. This study, for the first time, document the
process of dolomitization and evolution of strata bound dolomitic bodies. Field
investigation, petrography and geochemistry helped in unraveling the formation
of several dolomitic bodies. Petrographically dolomites comprises of: (1)
medium grain crystalline planer subhedral dolomite (Dol-I);
(2) fine grained crystalline anhedral non-planer
dolomite rhombs (Dol-II); (3) medium to coarse
grained crystalline subhedral-anhedral non-planer
dolomite (Dol-III) and coarse to very coarse grained
crystalline saddle dolomite cements (SD). The saddle dolomites (SD) postdate
the replacement dolomites and precede telogenetic calcite (TC) cements. Stable O and C isotope analysis shows that these
dolomites have δ18Ovpdb ranging from -4.09% to -10.4
whereas the δ13Cvpdb ranges from +0.8 to +2.51.
Major and trace elements data show that Sr concentrations of 145.5 to 173 ppm;
Fe contents of 2198 to 8215 ppm; and Mn contents of 93.5 to 411 ppm.
Petrographically replacive dolomites, saddle dolomite, and δ18Ovpdb values depicts neomorphism of replacement dolomites that were formed earlier
were exposed to late dolomitizing fluids. As a result of basin uplift during
the Himalayan orogeny in Eocene time, dolomitization event was stopped through
occurrence of meteoric water. The Main Boundary Thrust (MBT) and its splays
were most likely essential conduits that channelized dolomitizing fluids from
siliciclastic rocks that were buried deeply into the Jurassic carbonates rocks,
leading to more extreme dolomitization.
Keywords: Dolomitization; hydrothermal; isotope; saddle
dolomite
ABSTRAK
Dolomit penggantian berlaku dalam Formasi Jura Samanasuk di kawasan khel Dara Adam, banjaran Kohat,
Barat Laut Himalaya, Pakistan. Kajian ini, buat pertama kalinya, mendokumentasikan proses pendolomitan dan evolusi jasad dolomitik terikat strata. Penyelidikan lapangan, petrografi dan geokimia membantu merungkai pembentukan beberapa jasad dolomitik. Dolomit petrografi terdiri daripada: (1) dolomit subhedron perata kristal butiran sederhana (Dol-I); (2) rombus dolomit bukan perata anhedron kristal butiran halus (Dol-II); (3) dolomit bukan perata subhedron-anhedron kristal butiran sederhana hingga kasar (Dol-III)
dan simen dolomit pelana kristal kasar hingga kasar (SD). Pelana dolomit (SD) menunda penggantian dolomit dan mendahului telogenetik kalsit (TC) simen. Analisis isotop O dan C yang stabil menunjukkan bahawa dolomit ini mempunyai δ18Ovpdb antara -4.09% hingga -10.4 sedangkan δ13Cvpdb berkisar antara +0.8 hingga +2.51.
Data unsur utama dan unsur surih menunjukkan bahawa kepekatan Sr dari 145.5 hingga 173 ppm; kandungan Fe dari 2198 hingga 8215 ppm; dan kandungan Mn
93.5 hingga 411 ppm. Nilai dolomit pengganti petrografi, dolomit pelana dan nilai δ18Ovpdb menggambarkan neomorfisme penggantian dolomit yang terbentuk sebelumnya terdedah kepada cecair pendolomitan lewat. Akibat peningkatan lembangan semasa orogeni Himalaya pada usia Eosen, peristiwa pendolomitan dihentikan akibat terjadinya air meteor. Sungkup Sempadan Utama (MBT) dan megarnya kemungkinan besar merupakan saluran penting yang menyalurkan cecair pendolomitan daripada batuan silisiklastik yang terkubur jauh ke dalam batu karbonat Jura, menyebabkan pendolomitan yang lebih ekstrem.
Kata kunci: Hidroterma; isotop; pendolomitan; pelana dolomit
RUJUKAN
Adabi, M.H. 2009. Multistage dolomitization of upper jurassic mozduran formation, Kopet-Dagh Basin, n.e. Iran. Carbonates and Evaporites 24(1): 16-32.
Adams, A.E. & MacKenzie, W.S. 2001. A Colour Atlas of Carbonate Sediments and Rocks Under
the Microscope. London: Manson Publishing. p. 180.
Alam, I. 2008. Structure framework of the Marwat and Khisor range of
Pakistan. PhD
Thesis (Pub). NCE in Geology University of Peshawar, Pakistan. p. 132
(Unpublished).
Amthor, J.E. & Friedman, G.M. 1991. Dolomite-rock
textures and secondary porosity development in Ellenburger Group carbonates (Lower Ordovician), west Texas and southeastern New Mexico. Sedimentology 38(2): 343-362.
Boggs
Jr., S. & Boggs, S. 2009. Petrology
of Sedimentary Rocks. Cambridge: Cambridge University Press.
Bontognali, T.R.R. 2008. Microbial
dolomite formation within exopolymeric substances, PhD dissertation, ETH ZURICH. p. 141
(Unpublished).
Braithwaite,
C.J., Rizzi, G. & Darke, G. 2004. The geometry
and petrogenesis of dolomite hydrocarbon reservoirs: Introduction. Geological Society, London, Special
Publications 235(1): 1-6.
Chatterjee, S. & Bajpai, S.
2016. India’s northward drift from Gondwana to Asia during the late Cretaceous-Eocene. Proceedings of
Indian National Science Academy 82: 479-
487.
Chatterjee, S., Goswami, A. &
Christopher, R. 2013. The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian Plate during its northward
flight from Gondwana to Asia. Gondwana Research 23: 238-267.
Chatterjee, S. & Scotese, C.R. 2010. The wandering Indian plate and its
changing biogeography during the Late Cretaceous–Early Tertiary period. In New Aspects of Mesozoic Biogeography, edited
by Bandopadhyay, S. Berlin-Heidelberg, Germany: Springer-Verlag. pp. 105-126.
Chen, D., Qing, H. &
Yang, C. 2004. Multistage hydrothermal dolomites in the Middle Devonian (Givetian) carbonates from the Guilin area, South China. Sedimentology 51(5): 1029-1051.
Chuan, G., Zhao, C., Shaofeng, D., Yixiong, Q. & Cunge, l. 2017. Early dolomitisation of the Lower-Middle Ordovician cyclic carbonates in
northern Tarim Basin, NW China. Science China
Earth Sciences 60(7): 1283-1298.
Davies, G.R. & Smith
Jr., L.B. 2006. Structurally controlled hydrothermal dolomite reservoir facies:
An overview. AAPG Bulletin 90:
1641-1690.
Dickson, J.A.D. 1966.
Carbonate identification and genesis as revealed by staining. Journal of Sedimentary Research 36(2):
491-505.
Fairbridge, R.W. 1957. The dolomite question:
Regional aspects of carbonate deposition. Soc. Econ. Paleont. Mineral. 5: 124-178.
Fu, Q., Qing, H. &
Bergman, K.M. 2006. Dolomitization of the Middle Devonian Winnipegosis
carbonates in south-central Saskatchewan, Canada. Sedimentology 53(4): 825-848.
Fürsich, F.T., Callomon, J.H., Pandey,
D.K. & Jaitly, A.K. 2004. Environments and faunal
patterns in the Kachchh rift basin, western India, during the Jurassic. Rivista Italiana di Paleontologia e Stratigrafia 110: 181-190.
Gasparrini, M., Bechstädt, T.
& Boni, M. 2006. Massive hydrothermal dolomites
in the southwestern Cantabrian Zone (Spain) and their relation to the Late Variscan evolution. Marine
and Petroleum Geology 23(5): 543-568.
Ghauri, A.A.K., Rehman, O. & Rehman, S. 1983. A
new structural model of the southern slopes of kotal pass kohat division, NWFP, Pakistan. Geological Bulletin. University of Peshawar 16: 97-104.
Given, R.K. &
Lohmann, K.C. 1985. Derivation of the original isotopic composition of Permian
marine cements. Journal of Sedimentary
Research 55(3): 430-439.
Gomez-Rivas, E., Warber, K., Kulzer, F., Bons,
P.D., Koehn, D. & Martín-Martín, J.D. 2012. Structural evolution of the Benicàssim area (Maestrat basin,
NE Spain): insights from fracture and vein analysis. Geogaceta 51(7): 79-82.
Gregg, J.M. &
Shelton, K.L. 1990. Dolomitization and dolomite neomorphism in the back reef
facies of the Bonneterre and Davis formations
(Cambrian), southeastern Missouri. Journal
of Sedimentary Research 60(4): 549-562.
Henderson, A.L., Najman, Y.,
Parrish, R., Mark, D.F. & Foster, G.L. 2011. Constraints to the timing of
India-Eurasia collision; A re-evaluation of evidence from the Indus Basin
sedimentary rocks of the Indus-Tsangpo Suture Zone,
Ladakh, India. Earth-Science Reviews 106(3-4):
265-292.
Hauck, M.L., Nelson,
K.D., Brown, L.D., Zhao, W. & Ross, A.R. 1998. Crustal structure of the
Himalayan orogen at 90 east longitude from Project INDEPTH deep reflection
profiles. Tectonics 17(4): 481-500.
Hsü, K.J. 1967. Chemistry
of dolomite formation. In Carbonate
Rocks, edited by Chilingar, G.V. Bissel, H.J.
& Fairbridge, R.W. Elsevier, Amsterdam. pp.
169-191.
Huang, S.J., Shi, H., Mao, X.D.,
Zhang, M., Shen, L.C. & Wu, W.H. 2003. Diagenetic alteration of Earlier Palaeozoic marine carbonate and preservation for the
formation of sea water. Journal-Chengdu University of Technology 30:
9-18 (in Chinese with English abstract).
Kakemem, U., Jafarian,
A., Husinec, A., Adabi,
M.H. & Mahmoudi, A. 2021. Facies, sequence
framework, and reservoir quality along a Triassic carbonate ramp: Kangan Formation, South Pars Field, Persian Gulf Superbasin. Journal
of Petroleum Science and Engineering 198: 108166.
Koeshidayatullah, A., Corlett, H.,
Stacey, J., Swart, P.K., Boyce, A. & Hollis, C. 2020. Origin and evolution
of fault-controlled hydrothermal dolomitization fronts: A new insight. Earth and Planetary Science Letters 541:
116291.
Khan, M.A., Ahmed, R.,
Raza, H.A. & Kemal, A. 1986. Geology of petroleum in Kohat-Potwar Depression, Pakistan. AAPG Bulletin 70(4): 396-414.
Land,
L.S. 1998. Failure to precipitate dolomite at 25 °C from dilute solution
despite 1000-fold oversaturation after 32 years. Aquatic Geochemistry 4(3): 361-368.
Lavé, J. & Avouac,
J.P. 2000. Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal. Journal
of Geophysical Research: Solid Earth 105(B3): 5735-5770.
Leech, M.L., Singh, S., Jain, A.K., Klemperer, S.L. & Manickavasagam, R.M. 2005. The onset of India-Asia
continental collision: Early, steep subduction required by the timing of UHP
metamorphism in the western Himalaya. Earth
and Planetary Science Letters 234(1-2): 83-97.
Lucia, F.J. & Major,
R.P. 1994. Porosity evolution through hypersaline reflux dolomitization. Dolomites: A Volume in Honour of Dolomieu, edited by Purser, B., Tucker, M.
& Zenger, D. Wiley Online Library. pp. 325-341.
https://doi.org/10.1002/9781444304077.ch18.
Machel, H.G. & Anderson, J.H.
1989. Pervasive subsurface dolomitization of the Nisku Formation in central
Alberta. Journal of Sedimentary Research 59(6):
891-911. https://doi.org/10.1306/212F90AC-2B24-11D7-8648000102C1865D.
Machel,
H.G. & Lonnee, J. 2002. Hydrothermal dolomite - A
product of poor definition and imagination. Sedimentary Geology 152(3-4): 163-171.
Martín-Martín, J.D.,
Gomez-Rivas, E., Bover-Arnal, T., Travé,
A., Salas, R., MorenoBedmar, J.A., Tomás, S., Corbella, M., Teixell, A., Vergés, J. & Stafford, S.L. 2013. The upper Aptian-lower Albian
syn-rift carbonate succession of the southern Maestrat Basin (Spain): Facies architecture and
fault-controlled strata-bound dolostones. Cretaceous Research 41: 217-236.
Mazzullo, S.J. 1992. Geochemical and neomorphic alteration of dolomite: A review. Carbonates
and Evaporites 7(1): 21-37.
McDougall,
J.W., Hussain, A. & Yeats, R.S. 1993. The main boundary thrust and
propagation of deformation into the foreland fold-and-thrust belt in northern
Pakistan near the Indus River. Geological
Society, London, Special Publications 74(1): 581-588.
McKenzie, D.P. & Selater, J.G. 1973. The evolution of the Indian Ocean. Scientific American 228(5): 62-74.
Montaron, B. 2008. Confronting
carbonates. Oil Review Middle East 5(1): 132-135.
Ngia, N.R., Hu, M. & Gao, D. 2019. Tectonic and
geothermal controls on dolomitization and dolomitizing fluid flows in the
Cambrian-Lower Ordovician carbonate successions in the western and central Tarim Basin, NW China. Journal
of Asian Earth Sciences 172: 359-382.
O'Brien,
P.J., Zotov, N., Law, R., Khan, M.A. & Jan, M.Q.
2001. Coesite in Himalayan eclogite and implications for models of India-Asia collision. Geology 29(5): 435-438.
Purser,
B.H., Tucker, M.E. & Zenger, D.H. 1994. Problems, progress and future research
concerning dolomites and dolomitization. Dolomites: A Volume in Honour of Dolomieu 21: 3-20.
Rehman, H.U., Seno, T., Yamamoto, H.
& Khan, T. 2011. Timing of collision of the Kohistan–Ladakh Arc with India and Asia: Debate.
Island Arc 20(3): 308-328. https://doi.org/10.1111/j.1440-1738.2011.00774.x.
Ronchi, P., Masetti, D., Tassan, S. & Camocino, D. 2012. Hydrothermal dolomitization in platform
and basin carbonate successions during thrusting: A hydrocarbon reservoir
analogue (Mesozoic of Venetian Southern Alps, Italy). Marine and Petroleum Geology 29(1): 68-89.
Rosenbaum, J. &
Sheppard, S.M.F. 1986. An isotopic study of siderites, dolomites and ankerites
at high temperatures. Geochimica et Cosmochimica Acta 50(6): 1147-1150.
Saboor, A., Haneef, M., Hanif, M. & Swati,
M.A.F. 2020. Sedimentological attributes of the Middle Jurassic peloids-dominated carbonates of eastern Tethys, lesser
Himalayas, Pakistan. Carbonates and
Evaporites 35(4): 1-17.
Shah, M.M., Ahmed, W.,
Ahsan, N. & Lisa, M. 2016. Fault-controlled, bedding-parallel dolomite in
the middle Jurassic Samana Suk Formation in Margalla
Hill Ranges, Khanpur area (North Pakistan):
Petrography, geochemistry, and petrophysical characteristics. Arabian Journal of Geosciences 9(5):
405.
Sibley, D.F. & Gregg,
J.M. 1987. Classification of dolomite rock textures. Journal of Sedimentary Research 57(6): 967-975.
Swennen, R., Dewit,
J., Fierens, E., Muchez,
P., Shah, M., Nader, F. & Hunt, D. 2012. Multiple dolomitization events
along the Pozalagua Fault (Pozalagua Quarry, Basque–Cantabrian Basin, Northern Spain). Sedimentology 59(4): 1345-1374.
Tahirkheli, R.A.K. 1982. Geology of the Himalaya,
Karakoram and Hindukush in Pakistan. Special
Issue, Geological Bulletin of the University of Peshawar 15. p. 51.
Tahirkheli, R.A.K. 1979. Geology of Kohistan and adjoining
Eurasian and Indo-Pakistan continents, Pakistan. In Geology of Kohistan, edited by Tahirkheli,
R.A.K. & Jan, M.Q. Special Issue, Geological
Bulletin of the University of Peshawar 11. pp. 1-30.
Tucker, M.E. &
Wright, V.P. 1990. Carbonate
Sedimentology. Oxford: Blackwell Publishing Ltd.
Ullah
Khan, E., Saleem, M., Naseem, A.A., Ahmad, W., Yaseen, M. & Khan, T.U.
2020. Microfacies analysis, diagenetic overprints, geochemistry, and reservoir
quality of the Jurassic Samanasuk Formation at the Kahi Section, Nizampur Basin, NW
Himalayas, Pakistan. Carbonates and
Evaporites 35(3): 1-17.
Veizer, J. 1983. Trace elements and isotopes in
sedimentary carbonates. Reviews in
Mineralogy 11: 265-300.
Wadood, B., Khan, S., Liu, Y., Li, H. &
Rahman, A. 2021. Investigating the impact of diagenesis on reservoir quality of
the Jurassic shallow shelfal carbonate deposits: Kala Chitta Range, North Pakistan. Geological Journal 56(2):
1167-1186.
White,
D.E. 1957. Thermal waters of volcanic origin. Geological Society of America Bulletin 68(12): 637-1658.
Yaseen,
M., Wahid, S., Ahmad, S., Rehman, G., Ahmad, J., Anjum, M.N. & Mehmood, M.
2021. Tectonic evolution, prospectivity and
structural studies of the hanging wall of Main Boundary Thrust along Akhurwal-Kohat transect, Khyber Pakhtunkhwa: Implications
for future exploration. Arabian
Journal of Geosciences 14(4): 1-17.
* Pengarang untuk surat-menyurat;
email: abbasaliqau@gmail.com
|