Sains Malaysiana 50(2)(2021): 493-505
http://dx.doi.org/10.17576/jsm-2021-5002-20
Bacterial
Cellulose - Properties and Its Potential Application
(Bakteria
Selulosa - Sifat dan Keupayaan Aplikasi)
IZABELA BETLEJ1,
SARANI ZAKARIA2, KRZYSZTOF J. KRAJEWSKI1 & PIOTR
BORUSZEWSKI1*
1Institute of Wood Sciences and Furniture, Warsaw
University of Life Science – SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland
2Bioresources & Biorefinery Laboratory,
Department of Applied Physics, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan: 29
April 2020/Diterima: 6 Ogos 2020
ABSTRACT
This review paper is related to
the utilization on bacterial cellulose in many applications. The polymer produced
from bacterial cellulose possessed a very good physical and mechanical
properties, such as high tensile strength, elasticity, absorbency. The polymer
from bacterial cellulose has a significantly higher degree of polymerization
and crystallinity compared to those derived from plant. The collection of
selected literature review shown that bacterial cellulose produced are in the
form pure cellulose and can be used in many of applications. These include
application in various industries and sectors of the economy, from medicine to
paper or electronic industry.
Keywords: Acetobacter
xylinum; biocomposites; culturing; properties of bacterial cellulose
ABSTRAK
Ulasan kepustakaan ini adalah mengenai bakteria
selulosa yang digunakan dalam banyak aplikasi. Bahan polimer yang terhasil
daripada bakteria selulosa mempunyai sifat fizikal dan mekanikal yang sangat
baik seperti sifat kekuatan regangan, kelenturan dan serapan. Bahan polimer
terhasil daripada selulosa bakteria mempunyai darjah pempolimeran dan kehabluran
yang tinggi berbanding daripada sumber tumbuhan. Suntingan kajian daripada
beberapa koleksi ulasan kepustakaan menunjukkan bakteria selulosa terhasil
adalah selulosa tulen yang boleh digunakan untuk banyak kegunaan. Antaranya
adalah untuk pelbagai industri dan sektor ekonomi seperti perubatan atau
industri elektronik.
Kata
kunci: Acetobacter
xylinum; komposit-bio; pengkulturan;
sifat bakteria selulosa
RUJUKAN
Abeer, M.M., Amin, M.C.I.M., Lazim, A.M., Pandey, M. & Martin,
C. 2014. Synthesis of a novel acrylated abietic acid-G-bacterial cellulose hydrogel by gamma
irradiation. Carbohydrate Polymers 110(38):
505-512.
Abushammala, H. & Mao, J. 2019. A review of the surface
modifcation of cellulose and nanocellulose using aliphatic and aromatic monoand
di-isocyanates. Molecules 24(15):
2782.
Amin,
M.C.I.M., Abadi, A.G., Ahmad, N., Katas, H. & Jamal, J.K. 2012. Bacterial cellulose film coating as drug delivery
system: Physicochemical, thermal and drug release properties. Sains Malaysiana 41(5): 561-568.
Amorim,
J.D.P., Junior, C.J.G.S., Costa, A.F.S., Nascimento, H.A., Vinhas, G.M. &
Sarrubo, L.A. 2020a. BioMask, a polymer blend for
treatment and healing of skin prone to acne. Chemical Engineering Transaction 79(1): 205-210.
Amorim,
J.D.P., de Souza, K.C., Duarte, C.R., da Silva Duarte, I., de Assis Sales Ribeiro, F., Silva, G.S., de Farias, P.M.A.,
Stingl, A., Costa, A.F.S., Vinhas, G.M. &
Sarubbo, L.A. 2020b. Plant and bacterial
nanocellulose: Production, properties and applications in medicine, food,
cosmetics, electronics and engineering: A review. Environmental Chemistry Letters 18(3): 851-869.
Amorim, J.D.P., Costa, A.F.S., Galdino, C.J.S.J., Vinhas, G.M.,
Santos, E. & Sarubbo, L.A. 2019. Bacterial cellulose production
using industrial fruit residues as subtract to industrial application. Chemical Engineering Transactions 74:
1165-1170.
Andarini,
M., Mokhtaron, M., Yamin, B.M., Amin, M.C.I.M., Hassan, I. & Lazim, A.M.
2017. Aplikasi hidrogel daripada selulosa bakteria (BC-g-PAA) sebagai nanoreaktor
bagi menghasilkan nanozarah ferum oksida (FeNps). Sains Malaysiana 46(10): 1789-1795.
Antolak,
H. & Kręgiel, D. 2015. Bakterie
kwasu octowego - taksonomia, ekologia oraz wykorzystanie przemysłowe. Żywność. Nauka. Technologia.
Jakość 4(101): 21-35.
Basta,
A.H. & El-Saied, H. 2009. Performance of improved bacterial cellulose
application in the production of functional paper. Journal of Applied Microbiology 107(6): 2098-2107.
Bae,
S., Sugano, Y. & Shoda, M. 2004. Improvement of bacterial cellulose
production by addition of agar in a jar fermentor. Journal of Bioscience and Bioengineering 97(1): 33-38.
Betlej,
I. 2019. Studies on the diversity of substrate composition in the culture
medium of Kombucha microorganisms and its influence on the quality of
synthesized cellulose. Annals of WULS SGGW Forestry and Wood Technology 108: 21-25.
Betlej, I., Salerno-Kochan, R., Krajewski, K.J., Zawadzki, J.
& Boruszewski, P. 2020. The influence of culture medium components on the
physical and mechanical properties of cellulose synthesized by kombucha
microorganisms. BioResources 15(2):
3125-3135.
Berndt, S., Wesarg, F., Wiegand, C., Kralisch, D. & Muller, F.
2013. Antimicrobial porous hybrids consisting of bacterial nanocellulose and
silver nanoparticles. Cellulose 20(2): 771-783.
Bodea, I.M., Cătunescu, G.M., Stroe, T.F., Dîrlea, S.A. &
Beteg, F.I. 2019. Applications of
bacterial-synthesized cellulose in veterinary medicine - A review. Acta Veterinaria Brno 88: 451-471.
Brown, A.J. 1886.
XIX - The chemical action of pure cultivations of Bacterium aceti. Journal of Chemical Society
Transactions 49: 172-187.
Campano, C., Merayo, N., Balea, A., Tarrés, Q., Delgado-Aguilar,
M., Mutjé, P., Negro, C. & Blanco, A. 2018a. Mechanical and chemical
dispersion of nanocelluloses to improve their reinforcing effect on recycled
paper. Cellulose 25(1): 269-280.
Campano, C., Merayo, N., Negro, C. & Blanco, A. 2018b.
Low-fibrillated bacterial cellulose nanofibers as a sustainable additive to
enhance recycled paper quality. International
Journal of Biological Macromolecules 114(10): 1077-1083.
Campano, C., Merayo, N., Negro, C. & Blanco, A. 2018c. In-situ production of bacterial cellulose to economically improve recycled paper
properties. International Journal of
Biological Macromolecules 118(14): 1532-1541.
Castro,
C., Zuluaga, R., Putaux, J.L., Caro, G., Mondragon, I. & Ganán, P. 2011.
Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from
Colombian agroindustrial wastes. Carbohydrate
Polymers 84(1): 96-102.
Cavicchioli,
M., Corso, C.T., Coelho, F., Mendes, L., Saska, S., Soares, C.P., Souza, F.O.,
Franchi, L.P., Capote, T.S.O., Scarel-Caminaga, R.M., Messaddeq, Y. & Ribeiro, S.J.L. 2015. Characterization
and cytotoxic, genotoxic and mutagenic evaluations of bacterial cellulose
membranes incorporated with ciprofloxacin: A potential material for use as
therapeutic contact lens. World
Journal of Pharmacy and Pharmaceutical Sciences 4(7): 1626-1647.
Chaiyasat, A., Jearanai, S., Moonmangmee, S.,
Moonmangmee, D., Christopher, L.P., Alam, M.N. & Chaiyasat, P. 2018. Novel green hydrogel material using bacterial cellulose. Oriental Journal of Chemistry 34(4):
1735-1740.
Chang,
S.T., Chen, L.C., Lin, S.B. & Chen, H.H. 2012. Nano-biomaterials
application: Morphology and physical properties of bacterial cellulose/gelatin
composites via crosslinking. Food
Hydrocolloides 27(1): 137-144.
Chantereau, G., Brown, N., Dourges, M.A., Freire, C.S.R., Silvestre, A.J.D., Sebe, G. &
Coma, V. 2019. Silylation of bacterial cellulose to
design membranes with intrinsic antibacterial properties. Carbohydrate Polymers 220(18): 71-78.
Chen,
G., Wu, G., Chen, L., Wang, W., Hong, F.F. & Jönsson, L.J. 2019. Comparison
of productivity and quality of bacterial nanocellulose synthesized using
culture media based on seven sugars from biomass. Microbial Biotechnology 12(4): 677-687.
Chwala,
P.R., Bajaj, I.B., Survase, S.A. & Singhal, R.S. 2009. Microbial cellulose: Fermentative production
and applications. Food Technology and
Biotechnology 47(2): 107-124.
Chunshom, N., Chuysinuan,
P., Techasakul, S. & Ummartyotin, S. 2018.
Dried-state bacterial cellulose (Acetobacter
xylinum) and polyvinylalcohol-based hydrogel: An approach to a personal
care material. Journal of Science:
Advanced Materials and Devices 3(3): 296-302.
Ciechańska,
D. 2004. Multifunctional bacterial
cellulose/chitosan composite materials for medical applications. Fibres
& Textiles in Eastern Europe 12(4): 69-72.
Czaja,
W., Krystynowicz, A., Bielecki, S. & Brown, R.M. 2006. Microbial cellulose
- The natural power to heal wounds. Biomaterials 27(2): 145-151.
Dai,
L., Nan, J., Tu, X., He, L., Wei, B., Xu, Ch., Xu, Y., Li, S., Wang, H. & Zhang,
J. 2019. Improved thermostability and
cytocompatibility of bacterial cellulose/collagen composite by collagen
fibrillogenesis. Cellulose 26(11):
6713-6724.
Domskiene,
J., Sederaviciute, F. & Simonaityte, J. 2019. Kombucha bacterial cellulose
for sustainable fashion. International
Journal of Clothing Science and Technology 31(5): 644-652.
Dutton,
J.J. 1991. Coralline hydroxyapatite as an ocular implant. Ophthalmology
98(3): 370-377.
Embuscado,
M.E., Marks, J.S. & be Miller, J.N. 1994.
Bacterial cellulose II. Optimization
of cellulose production by Acetobacter xylinum through response surface
methodology. Food Hydrocolloids 8(5): 419-430.
EP
0197748. Brown, M.R. 1991. Magnetic alteration of cellulose during its
biosynthesis (European Patent).
EP0318543.
Warcoin, J. 1988. Process for producing bacterial cellulose from material of
plant origin (European Patent).
Fan,
X., Gao, Y., He, W., Hu, H., Tian, M., Wang, K. & Pan, S. 2016. Production of nano bacterial cellulose from beverage
industrial waste of citrus peel and pomace using Komagataeibacter xylinus. Carbohydrate
Polymers 151(17): 1068-1072.
Fernandes,
M., Gama, M., Durado, F. & Souto, A.P. 2019a. Development
of novel bacterial cellulose composites for the textile and shoe
industry. Microbial Biotechnology 12(4): 650-661.
Fernandes,
M., Souto, A.P., Gama, M. & Dourado, F. 2019b. Bacterial cellulose and emulsified AESO
biocomposites as an ecological alternative to leather. Nanomaterials 9(12): 1-18.
Fontana,
J.D., Desouza, A.M., Fontana, C.K., Torriani, I.L., Moreschi, J.C., Gallotti,
B.J., Desouza, S.J., Narcisco, G.P., Bichara, J.A. & Farah, L.F.X. 1990. Acetobacter cellulose pellicle as a
temporary skin substitute. Applied
Biochemistry and Biotechnology 24(1): 253-264.
Galdino Jr., C.J.S., Maia, A.D., Meira, H.M., Souza, T.S., Amorim,
J.D.P., Almeida, F.C.G., Costa, A.F.S. & Sarubbo, L.A. 2020. Use of a bacterial cellulose filter for the
removal of oil from wastewater. Process
Biochemistry 91(4): 288-296.
Gao, W.H., Chen, K.F., Yang, R.D., Yang, F. & Han, W.J. 2010.
Properties of bacterial cellulose ad its influence on the physical properties
of paper. BioResources 6(1): 144-153.
Garcia,
C. & Pieto, M.A. 2018. Bacterial cellulose as a potential bioleather
substitute for the footwear industry. Microbial
Biotechnology 12(4): 582-585.
Gündüz,
G., Asik, N., Aydemir, D. & Kiliç, A. 2015. Bkteriyel selüloz Űretimi
ve karakterizasyonu. Ormancilk Dergisi 10(2): 1-10.
Huang, Ch., Ji,
H., Guo, B., Luo, L., Xu, W., Li, J. & Xu, J. 2019. Composite nanofiber membranes of bacterial cellulose/halloysite
nanotubes as lithium ion battery separators. Cellulose 26(11): 6669-6681.
Huang,
Ch., Guo, H.J., Xiong, L., Wang, B., Shi, S.L., Chen, X.F., Lin, X.Q., Wang,
C., Luo, J. & Chen X.D. 2016. Using wastewater
after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus. Carbohydrate Polymers 136(2): 198-202.
Hussain,
Z., Sajjad, W., Khan, T. & Wahid, F. 2019. Production
of bacterial cellulose from industrial wastes: A review. Cellulose 26(5): 2895-2911.
Hyun, J.Y., Mahanty, B. & Kim, C.G. 2014. Utilization of
Makgeolli sludge filtrate (MSF) as low-cost substrate for bacterial cellulose
production by Gluconacetobacter xylinus. Applied Biochemistry and Biotechnology 172(8): 3748-3760.
Illa,
M.P., Sharma, C.S. & Khandelwal, M. 2019. Tuning the physiochemical
properties of bacterial cellulose: Effect of drying conditions. Journal of Materials Science 54(18):
12024-12035.
Indriyati,
Irmavati, Y. & Puspitasari, T. 2019. Comparative study of bacterial cellulose film dried using microwave and
air convection heating. Journal of
Engeneering and Technological Sciences 51(1): 121-132.
Jeremic,
S., Djokic, L., Adjačič, V., Božinowić, N., Pavlovic, V.,
Manojlović, D.D., Babu, R., Senthamaraikannan,
R., Rojas, O., Opsenica, I. & Nikodinovic-Runic,
J. 2019. Production of bacterial nanocellulose (BNC) and its application as a
solid support in transition metal catalysed cross-coupling reactions. International Journal of Biological Macromolecules 15(129): 351-360.
Jiang, F., Yu, N., Lei, Y., Yuan, F., Yu, Q. & Zhong, C. 2016.
Core-shell structured nanofibrous membrane as advanced separator for
lithium-ion batteries. Journal of
Membrane Science 510(14): 1-9.
Juncu,
G., Stoica-Guzun, A., Stroescu, M., Isopencu, G. & Jinga, S.I. 2016. Drug
release kinetics from carboxymethylcellulose-bacterial cellulose composite
films. International Journal of
Pharmaceutic 510(2): 485-492.
Jung, J.Y., Khan, T., Park, J.K. & Chang, H.N. 2007.
Production of bacterial cellulose by Gluconacetobacter
hansenii using a novel bioreactor equipped with a spin filter. Korean Journal of Chemical Engineering 24(2): 265-271.
Karahan,
A.G., Akoğlu, A., Çakir, I., Kart, A., Çakmakçi, L., Uygun, A. &
Göktepe, F. 2011. Some
properties of bacterial cellulose produced by new native strain Gluconacetobacter sp. A06O2 obtained from Turkish vinegar. Polymer
Science 121(3): 1823-1831.
Karimian,
A., Parsian, H., Majidina, M., Rahimi, M., Mir, S.M., Kafil, H.S.,
Shafiei-Irannejad, V., Kheyrollah, M., Ostadi, H. & Yousefi, B. 2019.
Nanocrystalline cellulose: Preparation, physicochemical properties, and
applications in drug delivery systems. International
Journal of Biological Macromolecules 133(13): 850-859.
Kim, J., Kim, S.W., Park, S., Lim, K.T., Seonwoo, H., Kim, Y.,
Hong, B.H., Choung, Y.H. & Chung, J.H. 2013. Bacterial cellulose nanofbrillar patch as a
wound healing platform of tympanic membrane perforation. Advanced Healthcare Materials 2(11): 1525-1531.
Kim,
J.Y., Kim, J.N., Wee, Y.J., Park, D.H. & Ryu, H.W. 2007. Bacterial
cellulose production by Gluconacetobacter sp. PKY5 in a rotary biofilm
contactor. Applied Biochemistry and Biotechnology 137(3): 529-537.
Kiziltas,
E.E., Kiziltas, A. & Gardner, D.J. 2015. Synthesis
of bacterial cellulose using hot water extracted wood sugars. Carbohydrate Polymers 124(9): 131-138.
Kołaczkowska,
M., Siondalski, P., Kowalik, M.M., Pękas, R., Długa, A., Zając,
W., Dederko, P., Kołodziejska, I., Malinowska-Pańczyk, E., Sienkiewicz,
I., Staroszczyk, H., Śliwińska, A., Stanisławska, A., Szkodko,
M., Pałczyńska, P., Jabłoński, G., Borman, A. &
Wilczek, P. 2019. Assessment of the usefulness of
bacterial cellulose produced by Gluconacetobacter xylinus E25 as a new
biological implant. Materials Science
& Engineering C 97(4): 302-312.
Krystynowicz, A., Czaja, W. & Bielecki S. 1999. Biosynteza i możliwości
wykorzystania celulozy bakteryjnej. Żywność.
Nauka. Technologia. Jakość 3(20): 22-34.
Kubiak, K., Kurzawa, M., Jedrzejczak-Krzepkowska, M., Ludwicka,
K., Krawczyk, M., Migdalski, A., Kacprzak, M.M., Loska, D., Krystynowicz, A.
& Bielecki, S. 2014. Complete genome sequence of Gluconacetobacter xylinus E25 strain-valuable and effective
producer of bacterial nanocellulose. Journal
of Biotechnology 176(8): 18-19.
Lazim,
A.M., Osman, A.H. & Mokhtarom, M. 2018. Kebolehserapan metilena biru oleh
hidrogel selulosa bakteria teradiasi gamma menggunakan isoterma Langmuir dan
Freundlich. Sains Malaysiana 47(4):
715-723.
Lee, K.Y., Buldum, G., Mantalaris, A. & Bismarck, A. 2014.
More than meets the eye in bacterial cellulose: Biosynthesis, bioprocessing,
and applications in advanced fiber composites. Macromolecular Bioscience 14(1): 10-32.
Lim, G.H., Lee, J., Kwon, N., Bok, S., Sim, H., Moon, K.S., Lee,
S.E. & Lim, B. 2016. Fabrication of flexible magnetic papers based on
bacterial cellulose and barium hexaferrite with improved mechanical properties. Electronic Materials Letters 12(5):
574-579.
Liu, K. &
Catchmark, J.M. 2019. Enhanced mechanical properties
of bacterial cellulose nanocomposites produced by co-culturing Gluconacetobacter hansenii and Escherichia coli under static
conditions. Carbohydrate Polymers 219(17): 12-20.
Liu, M., Liu, L., Jia, S., Li, S., Zou, Y. & Zhong, C. 2018.
Complete genome analysis of Gluconacetobacter
xylinus CGMCC 2955 for elucidating bacterial cellulose biosynthesis and
metabolic regulation. Scientific Reports 8(1): 6266.
Liu, X., Zheng, H., Li, Y., Wang, L. & Wang, C. 2019. A novel
bacterial cellulose aerogel modified with PGMA via ARGET ATRP method for
catalase immobilization. Fibers and
Polymers 20(3): 520-526.
Liu, X., Souzandeh, H., Zheng, H., Xie, Z., Zhong, W.H. &
Wang, C. 2017. Soy protein isolate/bacterial cellulose composite membranes for
high efficiency particulate air filtration. Composites
Science and Technology 138(1): 124-133.
Luo,
H., Dong, J., Xu, X., Wang, J., Yang, Z. & Wan, Y. 2018. Exploring
excellent dispersion of grapheme nanosheets in three-dimensional bacterial
cellulose for ultra-strong nanocomposite hydrogels. Composites Part A: Applied Science and Manufacturing 109(6): 290-297.
Lu, T., Gao, H.,
Liao, B., Wu, J., Zhang, W., Huang, J., Liu, M., Huang, J., Chang, Z., Jin, M.,
Yi, Z. & Jiang, D. 2020. Characterization and
optimization of production of bacterial cellulose from strain CGMCC 17276 based
on whole-genome analysis. Carbohydrate
Polymers 232(6): 1-14.
Maeda,
H., Nakajima, M., Hagiwara, T., Sawaguchi, T. & Yano, S. 2006. Bacterial
cellulose/silica hybrid fabricated by mimicking biocomposites. Journal of Materials Science 41(17):
5646-5656.
Mohammadkazemi, F., Khademibarangenani,
R. & Koosha, M. 2019. The effect of oxidation time and concentration on
physicochemical, structural, and thermal properties of bacterial
nano-cellulose. Natural Polymers 61(3): 265-273.
Muñoz-García,
J.C., Corbin, K.R., Hussain, H., Gabrielli, V., Koev, T., Iuga, D., Round,
A.N., Mikkelsen, D., Gunning, P.A., Warren, F.J. & Khimyak, Y.Z. 2019. High molecular weight mixed-linkage glucan as a mechanical
and hydration modulator of bacterial cellulose: Characterization by advanced
NMR spectroscopy. BioMacromolecules 20(11): 4180-4190.
Nakai, T., Sugano, Y., Shoda, M., Sakakibara, H., Oiwa, K., Tuzi,
S., Imai, T., Suqiyama, J., Takeuchi, M., Yamauchi, D. & Mineyuki, Y. 2013.
Formation of highly twisted ribbons in a carboxymethylcellulase gene-disrupted
strain of a cellulose-producing bacterium. Journal
of Bacteriology 195(5): 958-964.
Nie,
X., Lv, P., Stanley, S.L., Wang, D., Wu, S. & Wei, Q. 2019. Ultralight nanocomposite aerogels with interpenetrating
network structure of bacterial cellulose for oil absorption. Journal of Applied Polymers Science 136(39): 1-8.
P.433630
Boruszewski, P. & Betlej, I. 2020. Płyta wiórowa modyfikowana
celulozą bakteryjną (Patent Application).
Pacheco, G., De Mello, C.V., Chiari-Andreo, B.G., Isaac, V.L.B., Ribeiro, S.J.L., Pecoraro, E. & Trovatti, E. 2018. Bacterial cellulose skin masksproperties
and sensory tests. Journal of Cosmetic
Dermatology 17(5): 840-847.
Pacheco,
G., Nougeira, C.R., Meneguin, A.B., Trovatti, E., Silva, M.C.C., Machado,
R.T.A., Ribeiro, S.J.L., da Silva Filho, E.C. & Barud, H.S. 2017.
Development and characterization of bacterial cellulose produced by cashew tree
residuces as alternative carbon source. Industrial
Crop and Products 107(15): 13-19.
Pensupa, N., Leu, S.Y., Hu, Y., Du, C., Liu, H., Jing, H. &
Lin, C.S.K. 2017. Recent trends in sustainable textile waste recycling methods:
Current situation and future prospects. Topics
in Current Chemistry 2018(76): 189-228.
PL216180
Kukowska-Kaszuba, M., Długa, A., Bobiński, D. & Wilandt, W. 2011.
Sposób wytwarzania bionanocelulozy o własciwościach opatrunku na
uszkodzenia skóry. (Polish Patent).
Presler, S. & Surma-Ślusarska, B. 2006. Modyfikacja
roślinnych półproduktów papierniczych celulozą bakteryjną. Przemysł Chemiczny T85(8-9):
1297-1299.
Qi, G.X., Luo, M.T., Huang, C., Guo, H.J., Chen, X.F., Xiong, L.
& Chen, X.D. 2017. Comparison of bacterial cellulose production by Gluconacetobacter xylinus on bagasse
acid and enzymatic hydrolysates. Journal
of Applied Polymer Science 134: 45066.
Ross, P., Mayer, R. & Benziman, M. 1991. Cellulose
biosynthesis and function in bacteria. Microbiological
Reviews 55(1): 35-58.
Santos, S.M., Carbajo, J.M., Gómez, N., Ladero, M. & Villar,
J.C. 2017. Paper reinforcing by in situ growth of bacterial cellulose. Journal of Materials Science 52(10):
5882-5893.
Saska, S., Barud, H.S., Gaspar, A.M., Marchetto, R., Ribeiro, S.J.
& Messaddeq, Y. 2011. Bacterial cellulose-hydroxyapatite nanocomposites for
bone regeneration. International Journal
of Biomaterials 2011: Article ID. 175362.
Schaffner,
M., Rühs, P.A., Coulter, F., Kilcher, S. & Studart, A.R. 2017. 3D printing
of bacteria into functional complex materials. Science Advances 3(12): 1-9.
Sederavičiūtė, F., Bekampienė, P. &
Domskienė, J. 2019. Effect of pretreatment procedure on properties of
Kombucha fermented bacterial cellulose membrane. Polymer Testing 78(6): 105941.
Shoda,
M. & Sugano, Y. 2005. Recent advances in bacterial cellulose production. Biotechnology and Bioprocess Engineering 10(1): 1-8.
Sijabat,
E., Nuruddin, A., Aditiawati, P. & Purwasasmita,
B.S. 2020. Optimization on the synthesis of
bacterial nano cellulose (BNC) from banana peel waste for water filter membrane
applications. Materials Research Express 7(5): 2-10.
Silveira, R.K., Coelho, A.R., Pinto, F.C., de Albuquerque, A.V.,
de Melo Filho, D.A. & de Andrade Aguiar,
J.L. 2016. Bioprosthetic mesh of bacterial cellulose for treatment of abdominal
muscle aponeurotic defect in rat model. Journal
of Materials Science: Materials in Medicine 27(8): 129.
Skocaj,
M. 2019. Bacterial nanocellulose in papermaking. Cellulose 26(11): 6477-6488.
Skvortsova, Z.N., Gromovykh, T.I., Grahev, V.S. & Traskin,
V.Y. 2019. Physicochemical mechanics of bacterial cellulose. Colloid Journal 81(4): 366-376.
Sriplai,
N., Sirima, P., Palaporn, D., Mongkolthanaruk, W., Eichhorn, S.J. &
Pinitsoontorn, S. 2018. White magnetic paper based on bacterial cellulose nanocomposite. Journals of Materials Chemistry C 42(6): 11427-11435.
Stanisławska
A. 2016. Bacterial nonocellulose as a microbiological derived nanomaterial. Advances in Materials Science 16(4):
45-57.
Stanisławska,
A., Staroszczyk, H. & Szkodo, M. 2020. The
effect of dehydration/rehydration of bacterial nanocellulose on its
tensile strength and physicochemical properties. Carbohydrate Polymers 236(10): 116023.
Stasiak-Różanska, L. & Płoska, J. 2018. Study on the
use of microbial cellulose as a biocarrier for 1,3-dihydroxy-2-propanone and
its potential application in industry. Polymers 10(4): 2-10.
Sunasee,
R., Hemraz, U.D. & Ckless, K. 2016. Cellulose nanocrystals: A versatile
nanoplatform for emerging biomedical applications. Expert Opinion on Drug Delivery 13(9): 1243-1256.
Sutherland,
I.W. 1998. Novel and established applications of microbial polysaccharides. Trends
Biotechnology 16(1): 41-46.
Tahara,
N., Tabuchi, M., Watanabe, K., Yano, H., Morinaga, Y. & Yoshinaga, F. 1997. Degree of polymerization of cellulose from Acetohacter
xylinum BPR2001 decreased by cellulase produced by the strain. Bioscience, Biotechnology and Biochemistry 61(11): 1862-1865.
Tanaka, M.L., Vest, N., Ferguson, C.M. & Gatenholm, P. 2014. Comparison of biomechanical properties
of native menisci and bacterial cellulose implant. International
Journal of Polymeric
Materials and Polymeric Biomaterials63(17): 891-897.
Torgbo,
S. & Sukyai, P. 2018. Bacterial cellulose-based scaffold materials for bone
tissue engineering. Applied Materials
Today 11(2): 34-49.
Torres,
F.G., Arroyo, J.J. & Troncoso, O.P. 2019. Bacterial
cellulose nanocomposites: An all-nano type of material. Materials Science & Engineering C 98(5): 1277-1293.
Toyosaki,
H., Naritomi, T., Seto, A., Matsuoka, M., Tsuchida, T. & Yoshinaga, F.
1995. Screening
of bacterial cellulose producing Acetobacter strains suitable for
agitated culture. Bioscience,
Biotechnology and Biochemistry 59(8): 1498-1502.
Ullah,
H., Wahid, F., Santos, H.A. & Khan, T. 2016. Advances in biomedical and
pharmaceutical applications of functional bacterial cellulose-based
nanocomposites. Carbohydrate Polymers 150(16): 330-352.
Urbina, L., Corcuera, M.A., Eceiza, A. & Retei, A. 2019. Stiff-all
bacterialcellulose nanopaper with enhanced mechanical and barrier properties. Materials Letters 246(13): 67-70.
Urbina,
L., Guaresti, O., Requies, J., Gabilondo, N., Eceiza,
A., Corcuera, M.A. & Retegi, A. 2018. Design of reusable novel membranes based
on bacterial cellulose and chitosan for the filtration of copper in
wastewaters. Carbohydrate Polymers 193(15): 362-372.
US4891317.
Brown Jr., R.M., Brown, D.S. & Gretz, M.R. 1990. Magnetic alternation cellulose
during its biosynthesis (US Patent).
US5846213.
Wai-Kei, W. 1998. Cellulose membrane and method for manufacture thereof. (US
Patent).
Wacikowski,
B. & Michałowski, M. 2020. The possibility of using bacterial
cellulose in particleboard technology. Annals of WULS SGGW Forestry and Wood Technology 109: 16-23.
Wang, J.,
Tavakoli, J. & Tang, Y. 2019. Bacterial
cellulose production, properties and applications with different culture
methods - A review. Carbohydrate Polymers 219(17): 63-76.
Watanabe,
K., Tabuchi, M., Morinaga, Y. & Yoshinaga, F. 1998. Structural features and
properties of bacterial cellulose produced in agitated culture. Cellulose 5(3): 187-200.
Vazquez, A., Foresti, M.L., Cerrutti, P. & Galvagno, M. 2013.
Bacterial cellulose from simple and low-cost production media by Gluconacetobacter xylinus. Journal of Polymers and Environment 21(2):
545-554.
Vigentini,
I., Fabrizio, V., Dellacà, F., Rossi, S., Azario, I., Mondi, C., Benaglia, M.
& Foschino, R. 2019. Set-up of bacterial cellulose production from the
genus
Komagataeibacter and its use in a gluten-free bakery product as a case
study. Frontiers in Microbiology 10:
1-13.
Yamada, Y., Yukphan, P., Lan Vu, H.T., Maramatsu, Y., Tanasupawat,
S. & Nakagawa, Y. 2012. Description
of Komagataeibacter gen. nov., with
proposals of new combinations (Acetobacteraceae). Journal of General and Applied Microbiology 58(5): 397-404.
Yang, G., Xie, J., Hong, F., Cao, Z. & Yang, X. 2012.
Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose
membrane: Effect of fermentation carbon sources of bacterial cellulose. Carbohydrate
Polymers 87(1): 839-845.
Yang,
X.Y., Huang, C., Guo, H.J., Xiong, L., Luo, J., Wang, B., Lin, X.Q., Chen, X.F.
& Chen, X.D. 2016. Bacterial cellulose production from the litchi extract
by Gluconacetobacter xylinus. Preprative Biochemistry &
Biotechnolology 46(1): 39-43.
Ye,
S., Jiang, L., Su, Ch., Zhu, Z., Wen, Y. & Shao, W. 2019. Development of
gelatin/bacterial cellulose composite sponges as potential natural wound
dressings. International Journal of
Biological Macromolecules 133(11): 148-155.
Yim,
S.M., Song, J.E. & Kim, H.R. 2017. Production and
characterization of bacterial cellulose fabrics by nitrogen sources of tea and
carbon sources of sugar. Process Biochemistry 59(8): 26-36.
Yoshino, A., Tabuchi, M., Uo, M., Tatsumi, H., Hideshima, K.,
Kondo, S. & Sekine, J. 2013. Applicability of bacterial cellulose
as an alternative to paper points in endodontic treatment. Acta Biomaterialia 9(4):
6116-6122.
Yuen, J.D., Shriver-Lake,
L.C., Walper, S.A., Zabetakis, D., Breger, J.C. & Stenger, D.A. 2020.
Microbial nanocellulose printed circuit boards for medical sensing. Sensors 20(1): 1-12.
Xiang, Z., Jin, X., Liu, Q., Cheng, Y., Li, J. & Lu, F. 2017a.
The reinforcement mechanism of bacterial cellulose on paper made from woody and
nonwoody fiber sources. Cellulose 24(11): 5147-5156.
Xiang, Z., Liu, Q., Chen, Y. & Lu, F. 2017b. Effects of
physical and chemical structures of bacterial cellulose on its enhancement to
paper physical properties. Cellulose 24(11): 3513-3523.
Zhao,
H., Xia, J., Wang, J., Yan, X., Wang, C., Lei, T., Xian, M. & Zhang, H.
2018. Production of bacterial cellulose using
polysaccharide fermentation wastewater as inexpensive nutrient sources. Biotechnology & Biotechnological
Equipment 32(2): 350-356.
Zhang, H., Jia, S., Wan, T., Jia, Y., Yang, H., Yan, L. &
Zhong, C. 2011. Biosynthesis of spherical Fe3O4/bacterial
cellulose nanocomposites as adsorbents for heavy metal ions. Carbohydrate
Polymers 86(4): 1558-1564.
*Pengarang untuk surat-menyurat;
email: piotr_boruszewski@sggw.edu.pl
|