Sains Malaysiana 50(2)(2021): 507-514
http://dx.doi.org/10.17576/jsm-2021-5002-21
Production of Porous Stainless
Steel using the Space Holder Method
(Penghasilan Keluli Tahan Karat Berliang menggunakan Kaedah Pengisi Pemegang Ruang)
TAN
KOON TATT1,2*, NORHAMIDI MUHAMAD3, ANDANASTUTI MUCHTAR3,
ABU BAKAR SULONG3 & KOK YIH SHIA3
1Faculty of Engineering & Built
Environment, MAHSA University, Bandar Saujana Putra, 42610 Jenjarom, Selangor Darul Ehsan, Malaysia
2School of Science & Technology, Wawasan Open University, 54, Jalan Sultan Ahmad Shah, 10050
Penang, Malaysia
3Centre for Materials Engineering and Smart
Manufacturing, Department of Mechanical and Materials Engineering, Faculty of
Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Diserahkan: 10 Januari 2020/Diterima: 27 Julai 2020
ABSTRACT
Metallic
foams and porous materials can be produced by various methods. Among the
methods that can produce metallic foams and porous materials, powder metallurgy
is a promising method. This study investigates the production of a porous
stainless steel by the space holder method in powder metallurgy. A novel space
holder i.e. glycine and binder consisting of polymethylmethacrylate and stearic
acid are used. Different amounts of glycine are added to the mixture of
stainless-steel powder and binder. Subsequently, each mixture is cold-pressed
at a pressure of 9-ton m-2. The samples are sintered at 1050 and
1150 °C with holding times of 30, 60, and 90 min. The microstructures and
physical and mechanical properties of the sintered samples are investigated. A
porous stainless steel with porosity ranging from 30.8 to 51.4% is successfully
fabricated. Results show that the glycine content and sintering parameters
influence the properties of the porous stainless steel. The sintering
temperature significantly affects volumetric shrinkage. Volumetric shrinkage
decreases as the volume fraction of glycine increases to 30% whereas sintering
temperature 1150 °C and holding time 90 min will increase the volumetric
shrinkage. The compressive yield strength and corresponding elastic modulus are
in the ranges of 22.9 to 57.6 MPa and 6.3 to 26.8 GPa,
respectively. The samples produced have potential biomedical applications
because their mechanical properties, yield strength and elastic modulus match
those of human bones.
Keywords: Metal foam; porous stainless steel;
sintered steel; space holder
ABSTRAK
Logam berbusa dan bahan berliang dapat dihasilkan dengan pelbagai kaedah. Antara kaedah yang boleh menghasilkan logam berbusa dan bahan berliang, metalurgi serbuk adalah kaedah yang berpotensi Penyelidikan ini mengkaji penghasilan keluli tahan karat berliang dengan kaedah pengisi pemegang ruang melalui metalurgi serbuk. Pengisi pemegang ruang terbaru iaitu glisina dan pengikat yang terdiri daripada polimetil metaklirat dan asid stearik digunakan. Jumlah kuantiti glisina yang berbeza ditambah kepada campuran serbuk keluli tahan karat dan pengikat. Selanjutnya, setiap campuran dimampat-sejuk dengan tekanan 9-ton m-2. Sampel disinter pada 1050 dan 1150 ℃ dengan masa pensinteran 30, 60 dan 90 minit. Mikrostruktur, sifat fizikal dan sifat mekanikal sampel dikaji. Keluli tahan karat berliang dengan keliangan dari 30.8 hingga 51.4% berjaya dihasilkan. Keputusan menunjukkan bahawa kandungan glisina dan parameter pensinteran mempengaruhi sifat keluli tahan karat berliang. Suhu pensinteran sangat menpengaruhi pengecutan isi padu. Pengecutan isi padu menurun apabila pecahan isi padu glisina meningkat kepada 30% sedangkan suhu pensinteran 1050 °C dan masa pensinteran 90 minit akan meningkatkan pengecutan isi padu. Kekuatan mampatan dan modus anjal adalah dalam lingkungan 22.9 ke 57.6 MPa dan 6.3 ke 26.8 GPa. Sampel yang dihasilkan berpotensi diaplikasikan dalam bidang bioperubatan kerana sifat mekanikalnya: Kekuatan mampatan dan modulus anjal sepadan dengan sifat mekanikal tulang manusia.
Kata kunci: Keluli disinter; keluli tahan karat berliang; logam berbusa; pengisi pemegang ruang
RUJUKAN
Abdel Ghanyl, N.A., El-Shenawy,
A.E. & Hussien, W.A.M. 2011. The inhibitive effect
of some amino acids on the corrosion behaviour of
316L stainless steel in sulfuric acid solution. Modern Applied Science 5(4): 19-29.
Abdullah,
Z., Ahmad, S. & Ramli, M. 2017. The impact of composition and sintering
temperature for stainless steel foams (ss316l) fabricated by space holder
method with urea as space holder. Materials
Science Forum 888: 413-417.
Ashby,
M.F., Evans, A.G., Fleck, N.A., Gibson, L.J., Hutchison, J.W. & Wadley,
H.N.G. 2000. Metal Foams-A Design Guide.
Butterworth-Heinemann: Elsevier. pp.
1-247.
Bakan, H.I. 2006. A
novel water leaching and sintering process for manufacturing highly porous
stainless steel. Scripta Materialia 55(2): 203-206.
Bekoz, N. & Oktay, E. 2012. Effects of carbamide shape and content on
processing and properties of steel foams. Journal
of Materials Processing Technology 212(10): 2109-2116.
Bhattarai,
S.R., Khalil, K.A., Dewidar, M., Hwang, P.H., Yi,
H.K. & Kim, H.Y. 2008. Novel
production method and in-vitro cell compatibility of porous Ti-6Al-4V
alloy disk for hard tissue engineering. Journal
of Biomedical Materials Research Part A 86(2): 289-299.
Cetinel, O., Esen, Z. & Yildirim, B. 2019. Fabrication, morphology analysis, and
mechanical properties of Ti foams manufactured using
the space holder method for bone substitute materials. Metals 9(340): 1-12.
Chen,
L., Li, T., Li, Yi-Min, He, H. & Hu, You-Hua. 2009. Porous titanium
implants fabricated by metal injection molding. Transactions of Nonferrous Metals Society of China 19(5): 1174-1179.
Chu,
Z., Jia, C., Liu, J., Ding, R. & Yuan, G. 2017. Effects of sintering time
on microstructure and properties of alumina foam ceramics. Journal of Ceramic Science and Technology 8(4): 499-504.
Dewidar, M. 2012.
Influence of processing parameters and sintering atmosphere on the mechanical
properties and microstructure of porous 316L stainless steel for possible
hard-tissue applications. Journal of
Mechanical & Mechatronics Engineering IJMME-IJENS 12(1): 10-24.
Dewidar, M.M., Khalil,
A.K. & Lim, J.K. 2007. Processing and mechanical properties of porous 316L
stainless steel for biomedical applications. Transactions
of Nonferrous Metals Society of China 17(3): 468-473.
German,
R.M. 1996. Sintering Theory and Practice.
5th ed. New York, USA: Wiley-Interscience Publication. pp. 1-232.
Gibson, L.J. & Ashby, M.F. 1997. Thermal, electrical and
acoustic properties of foams. In Cellular Solids: Structure and
Properties. 2nd ed. New York: Cambridge University Press. pp.
283-308.
Heary, R.F., Parvathreddy, N., Sampath, S. & Agarwal, N. 2017. Elastic modulus in the selection of interbody
implants. Journal of Spine Surgery 3(2):
163-167.
Joshi,
S. 2019. Comparative analysis of characteristics of stainless-steel cellular
material prepared through powder metallurgy using accicular and crushed urea as space holder. Material
Science Research India 16(2): 183-188.
Manam, N.S., Harun,
W.S.W., Shri, D.N.A., Ghani, S.A.C., Kurniawan, T., Ismail M.H. & Ibrahim,
M.H.I. 2017. Study of corrosion in biocompatible metals for implants: A review. Journal of Alloys and Compounds 701:
698-715.
Manonukul, A., Muenya, N., Léaux, F. & Amaranan, S. 2010. Effects of replacing metal powder with
powder space holder on metal foam produced by metal injection moulding. Journal of
Materials Processing Technology 210(3): 529-535.
Mutlu, I. & Oktay, E. 2011. Production and characterisation of Cr-Si-Ni-Mo
steel foams. Indian Journal of
Engineering & Materials Sciences 18: 227-232.
Osman,
H.A., Omran, A.M., Atlam,
A.A., Sulong, A.B. & Kh, M.M. 2017. Characterization of aluminium foam produced from aluminium scrap by using CaCo3 as foaming agent. Journal of Engineering
Sciences 45(4): 448-459.
Ramli,
M.I., Sulong, A.B., Muhamad, N., Muchtar,
A., Arifin, A., Mohd Foudzi,
F. & Hammadi Al-Furjan, M.S. 2018. Effect of
sintering parameters on physical and mechanical properties of powder injection moulded stainless steel-hydroxyapatite composite. PLoS ONE 13(10): e0206247.
Seuba, J., Deville, S., Guizard, C. & Stevenson, A.J. 2016. Mechanical properties and failure behavior
of unidirectional porous ceramics. Scientific
Reports 6(24326): 1-11.
Su,
M.Z., Wang, H.M. & Chen, C. 2017. Effects of micropores on processing and
properties of porous irons. Applied
Mechanics and Materials 863: 26-32.
Tan,
K.T. 2016. Penghasilan keluli tahan karat SS316L berbusa melalui kaedah pengisi pemegang ruang-pengacuanan suntikan logam. PhD Thesis, Fakulti Kejuruteraan dan Alam Bina, Universiti Kebangsaan Malaysia
(Unpublished).
Tatt,
T.K., Muhamad, N., Muchtar, A., Sulong,
A.B. & Cherng, N.M. 2016. Influence of sintering
parameters on the compressive yield strength of stainless-steel foams produced
by the space holder method. Sains Malaysiana 45(4): 653-658.
Tatt,
T.K., Muhamad, N., Muchtar, A., Sulong,
A.B. & Yunn, H.S. 2012. Rheological behavior of
novel feedstock for manufacturing porous stainless steel via (MIM)-PSH. Jurnal Teknologi (Sciences and Engineering) 59: 187-191.
Wahab,
N.A., Ahmad, I.N., Omar, N.F., Zainal, N.F.A. & Loganathan, T.M. 2018. Processing of porous 316L stainless steel by
replacing metal powder with saccharose. International
Journal of Engineering & Technology 7(4.18): 232-236.
Wang,
J., Wang, N., Liu, X., Ding, J., Xia, X., Chen, X. & Zhao, W. 2018.
Compressive deformation behavior of closed-cell micro-pore magnesium composite
foam. Materials 11(731): 1-14.
Wen,
C.E., Mabuchi, M., Yamada, Y., Shimojima, K., Chino,
Y., Asahina, T. & Mabuchi, M. 2002. Processing and mechanical properties of
autogenous titanium implant materials. Journal
of Materials Science: Material in Medicine 13: 397-401.
Yi,
Y., Zheng, X., Fu, Z., Wang, C., Xu, X. & Tan, X. 2018. Multi-scale
modeling for predicting the stiffness and strength of hollow-structured metal
foams with structural hierarchy. Materials 11(380): 1-12.
Zhang,
K., Fan, Y., Dunne, N. & Li, X. 2018. Effect of microporosity on scaffolds for bone tissue engineering. Regenerative
Biomaterials 5(2): 115-124.
*Pengarang untuk surat-menyurat; email: sean@mahsa.edu.my
|