Sains Malaysiana 50(2)(2021): 515-523
http://dx.doi.org/10.17576/jsm-2021-5002-22
Image Reversal Resist Photolithography of
Silicon-Based Platinum and Silver Microelectrode Pattern
(Fotolitografi Tahan Pembalikan Imej Silikon Berasaskan Corak Mikroelektrod Platinum dan Perak)
NURULHAIDAH DAUD1*, NOR FARHAH
RAZAK1, NORMAHIRAH NEK ABD RAHMAN1, AZIZAH MOHD ZAHIDI1,
CHIN SIEW XIAN1, TENGKU ELMI AZLINA TENGKU MUDA1 &
MOHD ISMAHADI SYONO2
1Pusat GENIUS@Pintar Negara, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Nano Semiconductor
Technology, Mimos Berhad,
Technology Park Malaysia, 57000 Kuala Lumpur, Malaysia
Diserahkan: 27 Julai 2018/Diterima: 11 Julai 2020
ABSTRACT
Silicon-based
platinum (Pt) and silver (Ag) microelectrodes are constructed using
photolithography technique and used in detecting arsenic activity in different
electrolytes. Pt and Ag have good properties either as a working, a counter, or
a reference electrode due to their low electrical resistance, high melting
point, and high chemical stability. This chemical sensor has the ability to
detect the changes in the level or activity of arsenic in electrolytes.
Patterning these metals by wet chemical or dry etching is not a feasible
process as these metals cannot be etched properly. The lift-off process can be
applied to ease the etching process, but it has a major problem whereby the
metal particles or ears may remain at the edges at the end of the process. The
process variables, particularly the resist slope, were investigated to reduce
possible defects using an image reversal resist. The thickness and angle of the
resist side wall were measured by SEM. The effects of many factors that may
influence or resist steep angle formation were analyzed and optimized with the
Design of Experiment (DOE) technique to achieve the target recipe of resist
angle < 60°. The lower angle of the resist side wall resulted in a better
percentage yield of good electrode pattern after the lift-off process. The
ability of fabricated microelectrode and influence of supporting electrolytes
in arsenic determination were discussed.
Keywords: Lift-off; metal ear; photolithography;
resist slope
ABSTRAK
Silikon berasaskan corak mikroelektrod platinum dan perak telah dibangunkan menggunakan teknik fotolitografi tahan pembalikan imej dan diuji dalam ujian awal dengan kitaran voltammetri. Membuat corak logam ini dengan bahan kimia basah atau kering bukanlah proses yang wajar kerana logam ini tidak dapat terukir dengan betul. Proses pengangkatan dalam fotolitografi dapat diaplikasikan untuk memudahkan proses pemunaran, tetapi ia mempunyai masalah besar kerana zarah logam atau telinga logam mungkin berada di tepi corak elektrod di akhir proses. Pemboleh ubah proses, terutamanya kemerosotan rintang dikaji untuk mengurangkan kemungkinan kecacatan menggunakan penentangan pembalikan imej. Ketebalan dan sudut dinding sisi rintang diukur dengan mikroskop elektron imbasan (SEM). Kesan daripada banyak faktor yang dapat mempengaruhi pembentukan sudut curam rintang dianalisis dan dioptimumkan dengan teknik Reka Bentuk Uji Kaji (DOE) untuk mencapai resipi sasaran sudut menolak ≤ 60°. Sudut bawah dinding sisi rintang menghasilkan hasil peratusan yang lebih baik bagi corak elektrod yang baik setelah proses mengangkat. Keupayaan mikroelektrik fabrikan dan pengaruh elektrolit pendukung dalam penentuan arsenik telah dibincangkan.
Kata kunci: Fotolitografi; logam telinga; pengangkatan; sudut penentangan
RUJUKAN
Aziz, N.A., Buyong, M.R. & Majlis, B.Y. 2009. Process
characterization of wet etching for high aspect ratio microneedles
development. Advanced Materials Research 74: 341-344.
Basri, N.H., Deraman, M., Daik, R., Ayob, M.T.M., Sahri, M.I., Nor,
N.S.M., Dolah, B.N.M. & Soltaninejad,
S. 2015. Electrochemical impedance spectroscopy study of supercapacitors using
deposited nickel oxide nanoparticles carbon monolith electrodes. Advanced
Materials Research 1112: 236-240.
Basri, N.H., Deraman, M., Kanwal, S., Talib,
I.A., Manjunatha, J.G., Aziz, A.A. & Farma, R. 2013. Supercapacitors using binderless composite monolith electrodes from carbon nanotubes and pre-carbonized biomass
residues. Biomass and Bioenergy 59: 370-379.
Çiftyürek, E., Sabolsky, K. & Sabolsky, E.M. 2013.
Platinum thin film electrodes for high-temperature chemical sensor
applications. Sensors and Actuators B: Chemical 181: 702-714.
Daud, N., Yusof, N.A. & Nor, S.M.M. 2013. Electrochemical
characteristic of biotinyl somatostatin-14/nafion modified gold electrode in
development of sensor for determination of Hg (II). International
Journal of Electrochemical Science 8(7): 10086-10099.
Daud, N., Yusof, N.A., Tee, T.W. & Abdullah, A.H. 2012.
Electrochemical sensor for As(III) utilizing CNTs/leucine/nafion modified
electrode. International Journal of Electrochemical Science 7:
175-185.
Desa, M.M., Sapeai, S., Azhari, A.W., Sopian, K., Sulaiman,
M.Y., Amin, N. & Zaidi, S.H. 2016. Silicon back contact solar cell
configuration: A pathway towards higher efficiency. Renewable and
Sustainable Energy Reviews 60: 1516-1532.
Elgrishi, N., Rountree, K.J., McCarthy, B.D., Rountree, E.S.,
Eisenhart, T.T. & Dempsey, J.L. 2018. A practical beginner’s guide to
cyclic voltammetry. Journal of Chemical Education 95(2):
197-206.
Firebaugh, S.L., Jensen, K.F. & Schmidt, M.A. 1998.
Investigation of high-temperature degradation of platinum thin films with an in
situ resistance measurement apparatus. Journal of Microelectromechanical
Systems 7(1): 128-135.
Gritzner, G. & Kůta, J. 1984. Recommendations on
reporting electrode potentials in nonaqueous solvents. Pure and Applied
Chemistry 56(4): 461-466.
Hamdan, M.S., Nordin, N. & Amir, S.F.M. 2011.
Electrochemical behaviour of Ni and Ni-PVC electrodes for the electroxidation
of ethanol. Sains Malaysiana 40(12): 1421-1427.
Hutagalung, S.D., Lew, K.C. & Darsono, T. 2014. Nanoscale
patterning by AFM lithography and its application on the fabrication of silicon
nanowire devices. Sains Malaysiana 43(2): 267-272.
Jasni, M.R.M., Deraman, M., Zainuddin, Z., Hua, C.C. &
Omar, R. 2019. Elektrod superkapasitor daripada komposit karbon teraktif dan
grafen dengan perekat PVDF-HFP. Sains Malaysiana 48(2):
407-417.
Karim, N.A. & Kamarudin, S.K., 2013. An overview on
non-platinum cathode catalysts for direct methanol fuel cell. Applied
Energy 103: 212-220.
Martinez-Quijada, J., Caverhill-Godkewitsch, S., Reynolds,
M., Gutierrez-Rivera, L., Johnstone, R.W., Elliott, D.G., Sameoto, D. &
Backhouse, C.J. 2013. Fabrication and characterization of aluminum thin film
heaters and temperature sensors on a photopolymer for lab-on-chip
systems. Sensors and Actuators A: Physical 193: 170-181.
Patel, S.V., DiBattista, M., Gland, J.L. & Schwank, J.W.
1996. Survivability of a silicon-based microelectronic gas-detector structure
for high-temperature flow applications. Sensors and Actuators B:
Chemical 37(1-2): 27-35.
Samad, S., Loh, K.S., Wong, W.Y., Lee, T.K., Sunarso, J.,
Chong, S.T. & Daud, W.R.W. 2018. Carbon and non-carbon support materials
for platinum-based catalysts in fuel cells. International Journal of
Hydrogen Energy 43(16): 7823-7854.
Shaari, N. & Kamarudin, S.K. 2019. Recent advances in
additive‐enhanced polymer electrolyte membrane properties in fuel cell
applications: An overview. International Journal of Energy Research 43(7): 2756-2794.
Škriniarová, J., Pudiš, D., Andok, R., Lettrichová, I. &
Uherek, F. 2017. Investigation of the AZ 5214E photoresist by the laser
interference, EBDW and NSOM lithographies. Applied Surface Science 395:
226-231.
Taer, E., Deraman, M., Talib, I.A., Hashmi, S.A. & Umar,
A.A. 2011. Growth of platinum nanoparticles on stainless steel 316L current
collectors to improve carbon-based supercapacitor performance. Electrochimica
Acta 56(27): 10217-10222.
Yusof, N.A., Daud, N., Tee, T.W. & Abdullah, A.H. 2011.
Electrocatalytic characteristic of carbon nanotubes/glutamine/nafion modified
platinum electrode in development of sensor for determination of As(III). International
Journal of Electrochemical Science 6: 2385-2397
.
*Pengarang untuk surat-menyurat; email:
nurulhaidah@ukm.edu.my
|