Sains Malaysiana 50(5)(2021):
1255-1265
http://doi.org/10.17576/jsm-2021-5005-06
Hercide Atrazine Alters the Microbiota of the Filamentous
Green Alga Cladophora sp. Cultured
from Thailand
(Herbisid Atrazin Mengubah Mikrobiota Alga Hijau Berfilamen Cladophora sp. yang Dikultur dari
Thailand)
ANCHITTHA SATJARAK1,2*, JITTRA PIAPUKIEW2,3,
WIKROM CHANTHAPATCHOT2, KARNJANA RUEN-PHAM2 & ALISA
S. VANGNAI3,4
1Plants of Thailand Research Unit, Department of Botany,
Faculty of Science, Chulalongkorn University, 10330 Bangkok, Thailand
2Department of Botany, Faculty of Science, Chulalongkorn
University, 10330 Bangkok, Thailand
3Biocatalyst and Environmental Biotechnology Research Unit,
Faculty of Science, Chulalongkorn University, 254 Phayathai Rd., Pathumwan,
10330 Bangkok, Thailand
4Department of Biochemistry, Faculty of Science,
Chulalongkorn University, 10330 Bangkok, Thailand
Diserahkan:
15 April 2020/Diterima: 6 Oktober 2020
ABSTRACT
The attached green alga Cladophora known to harbor microbiota that play important roles in ecosystem, is
one of the most common freshwater filamentous green algae in rivers globally,
including those in the northern part of Thailand. These rivers mostly run
through agricultural regions where herbicides are heavily used to improve crop
quality and quantity. The extensively-used herbicide atrazine persists in soil
sediments through transport by surface runoff to rivers. The effect of such
herbicide contamination on Cladophora microbiota in Thailand have not been investigated. To acquire this information,
16S rDNA amplicons were used to compare microbiota of Cladophora sp. cultures treated with a spectrum of
atrazine concentrations. The results showed that the Cladophora microbiome included at least 106 possible
Operational taxonomic units (OTUs) representing twelve bacterial phyla which
are Acidobacteria, Actinobacteria, Armatimonadetes, Chloroflexi, Cyanobacteria,
Deinococcus-Thermus, Epsilonbacteraeota, Nitrospirae, Patescibacteria, Planctomycetes,
Proteobacteria, and WPS-2, representing both core and local algal bacteria. The
presence of atrazine was also correlated with changes in richness of bacterial
taxa suggesting that these algal epibiotic bacteria were differently affected
by atrazine treatments.
Keywords: 16S rDNA amplicons;
atrazine; Cladophora; microbiomes
ABSTRAK
Alga
hijau Cladophora telah diketahui melindungi mikrobiota yang memainkan peranan penting
dalam ekosistem, ia adalah salah satu alga hijau filamen air tawar yang biasa
dijumpai dalam sungai di seluruh dunia, termasuk di bahagian utara Thailand.
Sungai ini kebanyakannya merentasi kawasan pertanian di mana herbisid banyak
digunakan untuk meningkatkan kualiti dan kuantiti tanaman. Herbisid atrazin
yang digunakan secara meluas kekal di dalam endapan tanah secara pengangkutan
melalui larian permukaan ke sungai. Kesan pencemaran herbisid ke atas
mikrobiota Cladophora di Thailand
masih belum pernah dijalankan. Untuk memperoleh maklumat ini, amplikon 16S rDNA
digunakan untuk membandingkan kultur mikrobiota Cladophora sp. yang dirawat dengan spektrum kepekatan
atrazin. Hasil kajian menunjukkan bahawa mikrobiom Cladophora merangkumi sekurang-kurangnya 106
kemungkinan unit operasi taksonomi (OUT) yang mewakili dua belas filum bakteria
seperti Acidobacteria, Actinobacteria, Armatimonadetes, Chloroflexi,
Cyanobacteria, Deinococcus-Thermus, Epsilonbacteraeota, Nitrospirae,
Patescibacteria, Planctomycetes, Proteobacteria dan WPS-2, yang mewakili
kedua-dua bakteria alga teras dan tempatan. Kehadiran atrazin juga turut
dikaitkan dengan perubahan kekayaan taksa bakteria yang mencadangkan bahawa bakteria
epibiotik alga ini dipengaruhi secara berbeza oleh rawatan atrazin.
Kata
kunci: Amplikon 16S rDNA; atrazin; Cladophora; mikrobiom
RUJUKAN
Alcaraz, L.D., Peimbert, M., Barajas, H.R., Dorantes-Acosta,
A.E., Bowman, J.L. & Arteaga-Vázquez, M.A. 2018. Marchantia liverworts as a
proxy to plants’ basal microbiomes. Scientific
Reports 8(1): 12712.
Bohuss, I., Rékasi, T., Szikora, S., Barkács, K., Záray, G.
& Ács, É. 2005. Interaction of acetochlor and atrazine with natural
freshwater biofilms grown on polycarbonate substrate in Lake Velence (Hungary). Microchemical Journal 79: 201-205.
Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A.,
Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar,
F. & Bai, Y. 2019. Reproducible, interactive, scalable and extensible
microbiome data science using QIIME 2. Nature
Biotechnology 37(8): 852-857.
Braus, M.J., Graham, L.E. & Whitman, T.L. 2017.
Spatiotemporal dynamics of the bacterial microbiota on lacustrine Cladophora glomerata (Chlorophyta). Journal
of Phycology 53(6): 1255-1262.
Byappanahalli, M.N., Sawdey, R., Ishii, S., Shively, D.A.,
Ferguson, J.A., Whitman, R.L. & Sadowsky, M.J. 2009. Seasonal stability of Cladophora-associated Salmonella in Lake Michigan watersheds. Water Research 43(3): 806-814.
Byappanahalli, M.N., Whitman, R.L., Shively, D.A., Ferguson,
J., Ishii, S. & Sadowsky, M.J. 2007. Population structure of Cladophora-borne Escherichia coli in nearshore water of Lake Michigan. Water Research 41(16): 3649-3654.
Byappanahalli, M.N., Shively, D.A., Nevers, M.B., Sadowsky,
M.J. & Whitman, R.L. 2003. Growth and survival of Escherichia coli and enterococci populations in the macro-alga Cladophora (Chlorophyta). FEMS Microbiology Ecology 46(2):
203-211.
Chen, Q., Yang, B., Wang, H., He, F., Gao, Y. & Scheel,
R.A. 2015. Soil microbial community toxic response to atrazine and its residues
under atrazine and lead contamination. Environmental
Science and Pollution Research 22(2): 996-1007.
Chun, C.L., Ochsner, U., Byappanahalli, M.N., Whitman, R.L.,
Tepp, W.H., Lin, G., Johnson, E.A., Peller, J. & Sadowsky, M.J. 2013.
Association of toxin-producing Clostridium
botulinum with the macroalga Cladophora in the Great Lakes. Environmental Science
and Technology 47(6): 2587-2594.
Darriba, D., Taboada, G.L., Doallo, R. & Posada, D.
2012. jModelTest 2: More models, new heuristics and parallel computing. Nature Methods 9(8): 772.
De Souza, M.L., Seffernick, J., Martinez, B., Sadowsky, M.J.
& Wackett, L.P. 1998. The atrazine catabolism genes atzABC are widespread
and highly conserved. Journal of
Bacteriology 180(7): 1951-1954.
Department of Agriculture. 2019. Registered Hazardous Substance. Department of Agriculture, Ministry
of Agriculture and Cooperatives. Accessed on 18 December 2019.
Desitti, C., Beliavski, M., Tarre, S. & Green, M. 2017.
Stability of a mixed microbial population in a biological reactor during long
term atrazine degradation under carbon limiting conditions. International Biodeterioration and
Biodegradation 123: 311-319.
Devers, M., Henry, S., Hartmann, A. & Martin-Laurent, F.
2005. Horizontal gene transfer of atrazine‐degrading genes (atz) from Agrobacterium tumefaciens St96‐4
pADP1: Tn5 to bacteria of maize‐cultivated soil. Pest Management Science: Formerly Pesticide Science 61(9): 870-880.
Drouin, P., Sellami, M., Prévost, D., Fortin, J. &
Antoun, H. 2010. Tolerance to agricultural pesticides of strains belonging to
four genera of Rhizobiaceae. Journal of Environmental Science and Health
Part B 45(8): 757-765.
Drzyzga, O. 2012. The strengths and weaknesses of Gordonia:
A review of an emerging genus with increasing biotechnological potential. Critical Reviews in Microbiology 38(4):
300-316.
EPA
2003. Interim Reregistration Eligibility
Decision for Atrazine. Washington: U.S. Environmental Protection Agency
(EPA).
Esquirol, L., Peat, T.S., Wilding, M., Hartley, C.J.,
Newman, J. & Scott, C. 2018. A novel decarboxylating amidohydrolase
involved in avoiding metabolic dead ends during cyanuric acid catabolism in Pseudomonas sp. strain ADP. PLoS ONE 13(11): e0206949.
Fang, H., Zhang, H., Han, L., Mei, J., Ge, Q., Long, Z.
& Yu, Y. 2018. Exploring bacterial communities and biodegradation genes in
activated sludge from pesticide wastewater treatment plants via metagenomic
analysis. Environmental Pollution 243: 1206-1216.
Faria, M., Bordin, N., Kizina, J., Harder, J., Devos, D.
& Lage, O.M. 2018. Planctomycetes attached
to algal surfaces: Insight into their genomes. Genomics 110(5): 231-238.
Gadkari, D. 1991. Conjugation between two Escherichia coli strains and between Escherichia coli (donor) and Azospirillum brasilense (recipient) in
the presence of various herbicides. Toxicological
and Environmental Chemistry 30(3-4): 211-217.
Graham, L.E., Knack, J.J., Graham, M.E., Graham, J.M. &
Zulkifly, S. 2015. A metagenome for lacustrine Cladophora (Cladophorales)
reveals remarkable diversity of eukaryotic epibionts and genes relevant to
materials cycling. Journal of Phycology 51(3):
408-418.
Ishii, S., Yan, T., Shively, D.A., Byappanahalli, M.N.,
Whitman, R.L. & Sadowsky, M.J. 2006. Cladophora (Chlorophyta) spp. harbor human
bacterial pathogens in nearshore water of Lake Michigan. Applied and Environmental Microbiology 72(7): 4545-4553.
Katoh, K., Asimenos, G. & Toh, H. 2009. Multiple alignment
of DNA sequences with MAFFT. D. Posada. In Bioinformatics
for DNA Sequence Analysis, New Jersey: Humana Press. pp. 39-64.
Kruawal, K., Sacher, F., Werner, A., Müller, J. &
Knepper, T.P. 2005. Chemical water quality in Thailand and its impacts on the
drinking water production in Thailand. Science
of The Total Environment 340(1-3): 57-70.
Lage, O.M. & Bondoso, J. 2011. Planctomycetes diversity associated with macroalgae. FEMS Microbiology Ecology 78(2):
366-375.
Laungsuwon, R. & Chulalaksananukul, W. 2013. Antioxidant
and anticancer activities of freshwater green algae, Cladophora glomerata and Microspora floccosa, from Nan River in
northern Thailand. Maejo International
Journal of Science and Technology 7(2): 181-188.
Lebrero, R., Ángeles, R., Pérez, R. & Muñoz, R. 2016.
Toluene biodegradation in an algal-bacterial airlift photobioreactor: Influence
of the biomass concentration and of the presence of an organic phase. Journal of Environmental Management 183:
585-593.
Liao, X., Chen, C., Zhang, J., Dai, Y., Zhang, X. & Xie,
S. 2015. Operational performance, biomass and microbial community structure:
Impacts of backwashing on drinking water biofilter. Environmental Science and Pollution Research 22(1): 546-554.
Liu, X., Chen, K., Chuang, S., Xu, X. & Jiang, J. 2019.
Shift in bacterial community structure drives different atrazine-degrading
efficiencies. Frontiers in Microbiology 10: 88.
Marri, P.R., Hao, W. & Golding, G.B. 2007. The role of
laterally transferred genes in adaptive evolution. BMC Evolutionary Biology 7(1): S8.
Mikhailov, I.S., Zakharova, Y.R., Bukin, Y.S., Galachyants,
Y.P., Petrova, D.P., Sakirko, M.V. & Likhoshway, Y.V. 2019. Co-occurrence
networks among bacteria and microbial eukaryotes of lake Baikal during a spring
phytoplankton bloom. Microbial Ecology 77(1): 96-109.
Miller, M.A., Pfeiffer, W. & Schwartz, T. 2012. The
CIPRES science gateway: Enabling high-impact science for phylogenetics
researchers with limited resources. In Proceedings
of the 1st Conference of the Extreme Science and Engineering
Discovery Environment: Bridging from the eXtreme to the Campus and Beyond. pp.
1-8.
Ochman, H., Lawrence, J.G. & Groisman, E.A. 2000.
Lateral gene transfer and the nature of bacterial innovation. Nature 405: 299-304.
Olapade, O.A., Depas, M.M., Jensen, E.T. & McLellan,
S.L. 2006. Microbial communities and fecal indicator bacteria associated with Cladophora mats on beach sites along
lake Michigan shores. Applied and
Environmental Microbiology 72(3): 1932-1938.
Parulekar, N.N., Kolekar, P., Jenkins, A., Kleiven, S.,
Utkilen, H., Johansen, A., Sawant, S., Kulkarni-Kale, U., Kale, M. & Sæbø,
M. 2017. Characterization of bacterial community associated with phytoplankton
bloom in a eutrophic lake in South Norway using 16S rRNA gene amplicon sequence
analysis. PLoS ONE 12(3): e0173408.
Peerapornpisal, Y., Amornledpison, D., Rujjanawate, C.,
Ruangrit, K. & Kanjanapothi, D. 2006. Two endemic species of macroalgae in
Nan river, northern Thailand, as therapeutic agents. ScienceAsia 32(Supplement 1): 71-76.
Phewnil, O., Panichsakpatana, S., Tungkananuruk, N. &
Pitiyont, B. 2010. Atrazine transport from the maize (Zea mays L.) cultivated upland soil in Huay Kapo watershed, Nam Nao
district, Phetchabun province, Thailand. Thai
Journal of Agricultural Science 43(3): 119-127.
Phewnil, O., Tungkananurak, N., Panichsakpatana, S.,
Pitiyont, B., Siripat, N. & Watanabe, H. 2012. The residues of atrazine
herbicide in stream water and stream sediment in Huay Kapo watershed, Phetchabun
province, Thailand. Environment and
Natural Resources Journal 10(1): 42-52.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T.,
Yarza, P., Peplies, J. & Glöckner, F.O. 2013. The SILVA ribosomal RNA gene
database project: Improved data processing and web-based tools. Nucleic Acids Research 41(D1):
D590-D596.
Radosevich, M., Traina, S.J., Hao, Y.L. & Tuovinen, O.H.
1995. Degradation and mineralization of atrazine by a soil bacterial isolate. Applied and Environmental Microbiology 61(1):
297-302.
Ramanan, R., Kang, Z., Kim, B.H., Cho, D.H., Jin, L., Oh,
H.M. & Kim, H.S. 2015. Phycosphere bacterial diversity in green algae
reveals an apparent similarity across habitats. Algal Research 8: 140-144.
Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L.,
Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck,
J.P. 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model
choice across a large model space. Systematic
Biology 61(3): 539-542.
Saltykova, A. 2015. Identifying prokaryotic consortia that
live in close interaction with algae. Masters
Thesis. Ghent: Ghent University (Unpublished).
Sangchan, W., Bannwarth, M., Ingwersen, J., Hugenschmidt,
C., Schwadolrf, K. Thavornyutikarn, P., Pansombat, K. & Streck, T. 2014.
Monitoring and risk assessment of
pesticides in a tropical river of an agricultural watershed in northern
Thailand. Environmental Monitoring and
Assessment 186(2): 1083-1099.
Satsuma, K. 2009. Complete biodegradation of atrazine by a
microbial community isolated from a naturally derived river ecosystem
(microcosm). Chemosphere 77(4):
590-596.
Sherwood, A.R. & Presting, G.G. 2007. Universal primers
amplify a 23S rDNA plastid marker in eukaryotic algae and cyanobacteria. Journal of Phycology 43(3): 605-608.
Shukla, A. & Devine, M.D. 2008. Basis of crop
selectivity and weed resistance to triazine herbicides. In The Triazine Herbicides: 50 Years Revolutionizing Agriculture,
edited by LeBaron, H.M., McFarland, J.E. & Burnside, O.C. Oxford: Elsevier.
pp. 111-118.
Sohn, J.H., Kwon, K.K., Kang, J.H., Jung, H.B. & Kim,
S.J. 2004. Novosphingobium
pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic
hydrocarbon-degrading bacterium isolated from estuarine sediment. International Journal of Systematic and
Evolutionary Microbiology 54(5): 1483-1487.
Stamatakis, A. 2014. RAxML version 8: A tool for
phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9): 1312-1313.
Sugiura, K. 2009. Effects of chemicals and metal ions on
microcosms: Comparison of community metabolism to single-species responses to
toxicants. Japanese Journal of
Environmental Toxicology 12(1): 41-53.
Thiamdao, S., Boo, G.H., Boo, S.M. & Peerapornpisal, Y.,
2012. Diversity of edible Cladophora (Cladophorales, Chlorophyta) in northern and northeastern Thailand, based on
morphology and nuclear ribosomal DNA sequences. Chiang Mai Journal of Science 39(2): 300-310.
Topp, E., Zhu, H., Nour, S.M., Houot, S., Lewis, M. &
Cuppels, D. 2000. Characterization of an atrazine-degrading Pseudaminobacter sp. isolated from
Canadian and French agricultural soils. Applied
and Environmental Microbiology 66(7): 2773-2782.
Tóth, E.M., Vengring, A., Homonnay, Z.G., Kéki, Z., Spröer,
C., Borsodi, A.K., Márialigeti, K. & Schumann, P. 2014. Phreatobacter oligotrophus gen. nov.,
sp. nov., an alphaproteobacterium isolated from ultrapure water of the water
purification system of a power plant. International
Journal of Systematic and Evolutionary Microbiology 64(3): 839-845.
Trebst, A. 2008. The mode of action of triazine herbicides
in plants. In The Triazine Herbicides: 50
Years Revolutionizing Agriculture, edited by LeBaron, H.M., McFarland, J.E.
& Burnside, O.C. Oxford: Elsevier. pp. 101-110.
Udiković-Kolić, N., Scott, C. &
Martin-Laurent, F. 2012. Evolution of atrazine-degrading capabilities in the
environment. Applied Microbiology and
Biotechnology 96(5): 1175-1189.
Vargha, M., Takáts, Z. & Márialigeti, K. 2005.
Degradation of atrazine in a laboratory scale model system with Danube river
sediment. Water Research 39(8):
1560-1568.
Vos, M., Hesselman, M.C., te Beek, T.A., van Passel, M.W.
& Eyre-Walker, A. 2015. Rates of lateral gene transfer in prokaryotes: High
but why? Trends in Microbiology 23(10): 598-605.
Wallace, J.G. & May, G. 2018. Endophytes: The other
maize genome. In The Maize Genome,
edited by Bennetzen, J., Flint-Garcia, S, Hirsch, C., & Tuberosa, R. Cham:
Springer International. pp. 213-246.
Weiner, J.A., DeLorenzo, M.E. & Fulton, M.H. 2007.
Atrazine induced species-specific alterations in the subcellular content of
microalgal cells. Pesticide Biochemistry
and Physiology 87(1): 47-53.
Whitman, R.L., Shively, D.A., Pawlik, H., Nevers, M.B. &
Byappanahalli, M.N. 2003. Occurrence of Escherichia
coli and enterococci in Cladophora (Chlorophyta) in nearshore water and
beach sand of Lake Michigan. Applied and
Environmental Microbiology 69(8): 4714-4719.
Zhang, Y., Meng, D., Wang, Z., Guo, H., Wang, Y., Wang, X.
& Dong, X. 2012. Oxidative stress response in atrazine-degrading bacteria
exposed to atrazine. Journal of Hazardous
Materials 229-230: 434-438.
Zulkifly, S., Graham, J.M., Young, E.B., Mayer, R.J.,
Piotrowski, M.J., Smith, I. & Graham, L.E. 2013. The genus Cladophora Kützing (Ulvophyceae) as a globally distributed
ecological engineer. Journal of Phycology 49: 1-17.
Zulkifly, S., Hanshew, A., Young, E.B., Lee, P., Graham,
M.E., Graham, M.E., Piotrowski, M. & Graham, L.E. 2012. The epiphytic
microbiota of the globally widespread macroalga Cladophora glomerata (Chlorophyta, Cladophorales). American Journal of Botany 99(9): 1541-1552.
*Pengarang untuk surat-menyurat;
email: anchittha.s@chula.ac.th
|