Sains Malaysiana 50(5)(2021): 1267-1275
http://doi.org/10.17576/jsm-2021-5005-07
Biocontrol
Potential of Neem Leaf-Based Vermicompost as Indicated by Chitinase, Protease
and β-1,3-Glucanase Activity
(Potensi
Biokawalan Vermikompos Berasaskan Daun Semambu seperti yang Ditunjukkan oleh
Aktiviti Kitinase, Protease dan β-1,3-Glucanase)
LOH KHYE ER1, NOR
AZWADY ABDUL AZIZ2*, MUSKHAZLI MUSTAFA2 & INTAN
SAFINAR ISMAIL3
1Department of Bioscience, Faculty of Applied Sciences,
Tunku Abdul Rahman University College, Jalan Genting Kelang Setapak, 53300
Kuala Lumpur, Federal Territory, Malaysia
2Department of Biology, Faculty of Science, Universiti
Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
3Department of Chemistry, Faculty of Science,
Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
Diserahkan:
20 Mei 2020/Diterima: 7 Oktober 2020
ABSTRACT
The rising concern regarding
the negative impact of synthetic pesticides has led to the search for
alternative means of pest control. Vermicomposting the mixture of oil palm
empty fruit bunch and neem (Azadirachta
indica) leaves, with the latter known to
have pesticidal value, is therefore of great interest and significance to be
studied. The present study was conducted to evaluate the chitinase, protease
and β-1,3-glucanase activity of neem leaf-based vermicompost as an
indication of its biocontrol properties. The total microbial population of
different composition of the vermicompost was also investigated. The results
showed that at 10% neem composition, an increment in microbial population,
chitinase and protease activities was observed in the end product. A higher
concentration of neem exerted a suppressive effect on the microbial population
as well as enzymatic activity. This study suggested that the addition of an
appropriate composition of neem leaves as one of the raw materials for
vermicomposting would potentially enhance the performance of vermicompost as
biofertilizer as well as biopesticide.
Keywords: Biopesticide;
chitinase; neem leaf; protease; β-1,3-glucanase
ABSTRAK
Kebimbangan yang semakin
meningkat mengenai kesan negatif racun perosak sintetik telah menyebabkan
pencarian kaedah alternatif kawalan perosak. Oleh itu, pengkomposan campuran
tandan buah kosong kelapa sawit dan daun semambu (Azadirachta indica) yang diketahui mempunyai nilai racun perosak telah menarik perhatian
dan lebih bermakna untuk dikaji. Kajian ini dilakukan untuk menilai aktiviti
kitinase, protease dan β-1,3-glukanase vermikompos yang berasaskan daun
semambu sebagai petunjuk sifat biokawalannya. Jumlah populasi mikroorganisma bagi
vermikompos yang berbeza daripada segi komposisinya juga telah dikaji. Hasil kajian
menunjukkan peningkatan populasi mikroorganisma, aktiviti kitinase dan protease
pada produk akhir yang mempunyai 10% daun semambu. Kepekatan semambu yang lebih
tinggi memberi kesan penindasan terhadap populasi mikroorganisma dan juga
aktiviti enzim. Kajian ini mencadangkan bahawa penambahan komposisi daun semambu
yang sesuai sebagai salah satu bahan mentah untuk pengkomposan berpotensi
meningkatkan prestasi vermikompos sebagai baja dan racun perosak biologi.
Kata kunci: Daun semambu;
kitinase; protease; racun perosak biologi; β-1,3-glukanase
RUJUKAN
Aira, M., Monroy, F.
& Dominguez, J. 2006. Eisenia fetida (Oligochaeta, Lumbricidae) activates fungal growth, triggering cellulose
decomposition during vermicomposting. Microbial
Ecology 52(4): 738-747.
Akel, H., Al-Quadan, F. & Yousef, T.K. 2009. Characterization
of a purified thermostable protease
from hyperthermophilic Bacillus strain
HUTBS71. European Journal of Scientific
Research 31(2): 280-288.
Benitez, E., Sainz, H., Melgar, R. & Nogales, R. 2002.
Vermicomposting of a lignocellulosic waste from olive oil industry: A pilot
scale study. Waste Manage & Research 20(2): 134-142.
Chae, D.H., Jin, R.D., Hwangbo, H., Kim, Y.W., Kim, Y.C., Park,
R.D., Krishnan, H.B. & Kim, K.Y. 2006. Control of late blight (Phytophthora capsici) in pepper plant
with a compost containing multitude of chitinase-producing bacteria. BioControl 51: 339-351.
Chaudhary, S., Kanwar, R.K., Sehgal, A., Cahill, D.M., Barrow,
C.J., Sehgal, R. & Kanwar, J.R. 2017. Progress on Azadirachta indica based biopesticides in replacing synthetic toxic
pesticides. Frontiers in Plant Science 8: 610.
Coventry, E. & Allan, E.J. 2001. Microbial and chemical
analysis of neem (Azadirachta indica):
Notes on antimicrobial activity. Phytoparasitica 29: 441-450.
Devi, S.H., Vijayalakshmi, K., Jyotsna, K.P., Shaheen, S.K.,
Jyothi, K. & Rani, M.S. 2009. Comparative assessment in enzyme activities
and microbial populations during normal
and vermicomposting. Journal of
Environmental Biology 30(6): 1013-1017.
Gajalakshmi, S. & Abbasi, S.A. 2004. Neem leaves as a source
of fertilizer-cum-pesticide vermicompost. Bioresource
Technology 92(3): 291-296.
Garcia, C., Hernandez, T., Costa, F. & Ceccanti, B. 1994.
Biochemical parameters in soils regenerated by addition of organic wastes. Waste Management & Research 12(6):
457-466.
Gopal, M., Gupta, A., Arunachalam, V. & Magu, S.P. 2007.
Impact of azadirachtin, an insecticidal allelochemical from neem on soil
microflora, enzyme and respiratory activities. Bioresource Technology 98(16): 3154-3158.
Govindachari, T.R., Suresh, G., Geetha Gopalakrishnan, Masilamani,
S. & Banumathi, B. 2000. Antifungal activity of some tetratriterpenoids. Fitoterapia 71(3): 317-320.
Herigstad, B., Hamilton, M. & Heersink, J. 2001. How to
optimize the drop plate method for enumerating bacteria. Journal of Microbiological Methods 44(2): 121-129.
Jadhav, H.P. & Sayyed, R.Z. 2016. Hydrolytic enzymes of
rhizospheric microbes in crop protection. MedCrave
Online Journal of Cell Science & Report 3(5): 135-136.
Kiyasudeen, K., Jessy, S.R.S. & Ibrahim, M.H. 2014. Earthworm's
gut as reactor in vermicomposting process: A mini review. International Journal of Scientific and Research Publications 4(7):
1-6.
Ladd, J.N. & Butler, J.H. 1972. Short-term assays of soil
proteolytic enzyme activities using proteins and dipeptide derivitives as
substrates. Soil Biology and Biochemistry 4(1): 19-30.
Lazcano, C., Gomez-Brandon, M. & Dominguez, J. 2008.
Comparison of the effectiveness of composting and vermicomposting for the
biological stabilization of cattle manure. Chemosphere 72(7): 1013-1019.
Loh, K.E., Aziz, N.A.A., Kok, H.Y., Mustafa, M., Ismail, I.S.
& Zainudin, N.A.I.M. 2012. Potential of neem leaf-empty fruit bunch-based
vermicompost as biofertiliser-cum-biopesticide: Chemical properties, humic acid
content and enzymes (protease and phosphatase) activity in vermicompost (Part
I). Scientific Research and Essays 7(42): 3657-3664.
Lokanadhan, S., Muthukrishnan, P. & Jeyaraman, S. 2012. Neem
products and their agricultural applications. Journal of Biopesticides 5(Supplementary): 72-76.
Macci, C., Masciandaro, G. & Ceccanti, B. 2010.
Vermicomposting of olive oil mill wastewaters. Waste Management & Research 28(8): 738-747.
Mistry, J., Mukhopadhyay, A.P. & Baur, G.N. 2015. Status of N
P K in vermicompost prepared from two common weed and two medicinal plants. International Journal of Applied Sciences
and Biotechnology 3(2): 193-196.
Padmavathiamma, P.K., Loretta, Y.L. & Kumari, U.R. 2008. An
experimental study of vermi-biowaste composting for agriculture soil
improvement. Bioresource Technology 99(6): 1672-1681.
Palta, R.K. & Bhatnagar, R.K. 2007. Vermiculture: A technology
to manage solid wastes. In Earthworms for Solid Waste Management,
edited by Singh, S.M. India, International Book Distributing Co. pp. 17-50.
Pathma, J. & Sakthivel, N. 2012. Microbial diversity of
vermicompost bacteria that exhibit useful agricultural traits and waste
management potential. Springerplus 1:
26.
Pitson, S.M., Seviour, R.J. & Mcdougall, B.M. 1996.
Proteolytic inactivation of an extracellular (1🡪3)-β-glucanase
from the fungus Acremonium persicinum is associated with growth at neutral or alkaline medium pH. FEMS Microbiology Letters 145(2):
287-293.
Poulsen, P.H.B., Moller, J. & Magid, J. 2008. Determination of
a relationship between chitinase activity and microbial diversity in chitin
amended compost. Bioresource Technology 99(10): 4355-4359.
Uz, I. & Tavali, I.E. 2014. Short-term effect of vermicompost
application on biological properties of an alkaline soil with high lime content
from Mediterranean region of Turkey. The
Scientific World Journal 2014: 1-11.
Vivas, A., Moreno, B., Garcia-Rodiguez, S. & Benitez, E. 2009.
Assessing the impact of composting and
vermicomposting on bacterial community size and structure, and microbial functional diversity of an olive-mill
waste. Bioresource Technology 100(3):
1319-1326.
Yardim, E.N. & Edwards, C.N. 2003. Effects of organic and
synthetic fertilizer sources on pest and predatory insects associated with
tomatoes. Phytoparasitica 31(4):
324-329.
Yasir, M., Aslam, Z., Kim, S.W., Lee, S.W., Jeon, C.O. &
Chung, Y.R. 2009. Bacterial community composition and chitinase gene diversity
of vermicompost with antifungal activity. Bioresource
Technology 100(19): 4396-4403.
*Pengarang untuk surat-menyurat; email: azwady@upm.edu.my
|