Sains
Malaysiana 50(5)(2021): 1393-1405
http://doi.org/10.17576/jsm-2021-5005-18
Anti-Tumor
Activity of Metformin in Human Epidermal Growth Factor Receptor 2 Positive
Breast Cancer Cells
(Aktiviti
Anti-Tumor Metformin pada Reseptor Faktor Pertumbuhan Epidermis Manusia 2
Positif Sel Kanser Payudara)
FATHUL HUDA1,2*, SARI
EKAWATI3, ANINDY PUTRI ADDINA3, AHMAD FARIED2,4,
AFIAT BERBUDI1,2, TAOFIK RUSDIANA5, TENNY PUTRI6,
NURUL QOMARILLA6, LUKMAN HILFI7, IWAN SETIAWAN1 & MUHAMMAD HASAN BASHARI1,2
1Department of Biomedical Science, Faculty of Medicine,
Universitas Padjadjaran, Bandung 40161, Indonesia
2Oncology and Stem Cell Working Group, Faculty of Medicine,
Universitas Padjadjaran, Bandung 40161, Indonesia
3Bachelor of Medicine Program, Faculty of Medicine,
Universitas Padjadjaran, Bandung 40161, Indonesia
4Department of Neurosurgery, Faculty of Medicine, Universitas
Padjadjaran, Bandung 40161, Indonesia
5Department of Pharmaceutics and Pharmaceutical Technology,
Faculty of Pharmacy, Universitas Padjadjaran, Bandung 40161, Indonesia
6Cell Culture Laboratory, Faculty of Medicine, Universitas
Padjadjaran, Bandung 40161, Indonesia
7Department of Public Health, Faculty of Medicine,
Universitas Padjadjaran, Bandung 40161, Indonesia
Diserahkan: 18 Disember 2019/Diterima: 29 September 2020
ABSTRACT
Breast Cancer (BC) is the leading cause of cancer death in
women. One BC subtype is very aggressive with amplification of human epidermal
growth factor receptor 2 (HER2) protein. Although specific HER2+ targeting
agents are available, most of HER2+ BC patients develop resistant to these
agents. Recent studies show that metformin, is able to become anti-tumor in
various cancer cells. This research aims to evaluate anti-tumor activities of
metformin to HER2+ BC cells in both sensitive and resistant to trastuzumab. A series of assays were performed to
evaluate metformin anti-tumor activities in HCC-1954 and SKBR-3 HER2+ BC cells.
MTT assay was performed to evaluate cell death, and inhibitory concentration
(IC50), while scratch assay was performed to assess inhibition of
cell migration and clonogenic assay to assess cell proliferation. p<0.05 was
considered to be significant. Metformin could suppress the number of HER2+ BC
cells. Viability assay showed suppression of viable cells after metformin
incubation of 60 and 600 µM compared to control, 30 and 90%, respectively.
Surprisingly, IC50 of metformin was smaller in HER2+ BC HCC-1954
cells that resistant to trastuzumab compare to the sensitive one (SKBR-3). Both
were below 1 µM, with R2 more than 0.95. Additionally, clonogenic
assay showed less colony number and colony area with at least p < 0.05 in
colony number and p < 0.01 in the area. In addition, metformin inhibited
cell migration of HER2+ BC cells. Metformin
shows a potency as anti-tumor by inducing cell death, inhibiting cell
proliferation and cell migration of HER2+ BC cells.
Keywords: Breast Cancer; HER2+; metformin; Trastuzumab
resistant
ABSTRAK
Kanser Payudara (BC) adalah penyebab utama kematian akibat
barah pada wanita. Satu subjenis BC sangat agresif dengan penguatan protein
reseptor 2 faktor pertumbuhan epidermis manusia (HER2). Walaupun agen sasaran
HER2 + khusus ada, kebanyakan pesakit HER2 + BC mengalami ketahanan terhadap
agen ini. Kajian terbaru menunjukkan bahawa metformin mampu menjadi anti-tumor
pada pelbagai sel barah. Penyelidikan ini bertujuan untuk menilai aktiviti
anti-tumor metformin kepada sel HER2 + BC dengan sensitif dan tahan terhadap
trastuzumab. Satu siri ujian dilakukan untuk menilai aktiviti anti-tumor
metformin pada sel HCC-1954 dan SKBR-3 HER2 + BC. Ujian MTT dilakukan untuk
menilai kematian sel dan kepekatan penghambatan (IC50), sementara
ujian awal dilakukan untuk menilai penghambatan penghijrahan sel dan pengujian
klonogenik untuk menilai percambahan sel. p <0.05 dianggap signifikan.
Metformin dapat menekan bilangan sel HER2 + BC. Ujian daya maju menunjukkan
penekanan sel yang berdaya maju setelah inkubasi metformin 60 dan 600 µM
berbanding kawalan, masing-masing 30 dan 90%. Anehnya, IC50 metformin lebih
kecil pada sel HER2 + BC HCC-1954 yang tahan terhadap trastuzumab dibandingkan
dengan sel sensitif (SKBR-3). Kedua-duanya berada di bawah 1 µM, dengan R2
lebih daripada 0.95. Selain itu, ujian klonogenik menunjukkan bilangan koloni
dan kawasan koloni yang kurang dengan sekurang-kurangnya p <0.05 pada
bilangan koloni dan p < 0.01 di kawasan koloni. Sebagai tambahan, metformin
menghalang penghijrahan sel HER2 + BC sel. Metformin menunjukkan potensi
sebagai anti-tumor dengan mendorong kematian sel, menghambat percambahan sel dan
penghijrahan sel HER2+ sel BC.
Kata kunci: HER2 +; kanser payudara (BC); metformin,
rintangan Trastuzumab
RUJUKAN
Bashari, M.H., Fan, F.,
Vallet, S., Sattler, M., Arn, M., Luckner-Minden, C., Schulze-Bergkamen, H.,
Zornig, I., Marme, F., Schneeweiss, A., Cardone, M.H., Opferman, J.T., Jager,
D. & Podar, K. 2016. Mcl-1 confers protection of Her2-positive breast
cancer cells to hypoxia: Therapeutic implications. Breast Cancer Research 18(1): 26.
Bowker, S.L., Majumdar,
S.R., Veugelers, P. & Johnson, J.A. 2006. Increased cancer-related
mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care 29(2): 254-258.
Buzzai, M., Jones, R.G.,
Amaravadi, R.K., Lum, J.L., DeBerardinis, R.J., Zhao, F., Viollet, B. &
Thompson, C.B. 2007. Systemic treatment with the antidiabetic drug metformin
selectively impairs p53-deficient tumor cell growth. Cancer Research 67(14): 6745-6752.
Cazzaniga, M., DeCensi,
A., Pruneri, G., Puntoni, M., Bottiglieri, L., Varricchio, C.,
Guerrieri-Gonzaga, A., Gentilini, O.D., Pagani, G. & Dell'Orto, P. 2013.
The effect of metformin on apoptosis in a breast cancer presurgical trial. British Journal of Cancer 109(11):
2792-2797.
Cazzaniga, M., Bonanni,
B., Guerrieri-Gonzaga, A. & Decensi, A. 2009. Is it time to test metformin
in breast cancer clinical trials? Cancer
Epidemiology and Prevention Biomarkers 18(3): 701-705.
Chung, Y.C., Chang,
C.M., Wei, W.C., Chang, T.W., Chang, K.J. & Chao, W.T. 2018. Metformin-induced
caveolin-1 expression promotes T-DM1 drug efficacy in breast cancer cells. Scientific Report 8(1): 3930.
Cobleigh, M.A., Vogel,
C.L., Tripathy, D., Robert, N.J., Scholl, S., Fehrenbacher, L., Wolter, J.M.,
Paton, V., Shak, S. & Lieberman, G. 1999. Multinational study of the
efficacy and safety of humanized anti-HER2 monoclonal antibody in women who
have HER2-overexpressing metastatic breast cancer that has progressed after
chemotherapy for metastatic disease. Journal
of Clinical Oncology 17(9): 2639.
Collier, C.A., Bruce,
C.R., Smith, A.C., Lopaschuk, G. & Dyck, D.J. 2006. Metformin counters the
insulin-induced suppression of fatty acid oxidation and stimulation of
triacylglycerol storage in rodent skeletal muscle. American Journal of Physiology-Endocrinology and Metabolism 291(1):
E182-E189.
Davies, G., Lobanova,
L., Dawicki, W., Groot, G., Gordon, J.R., Bowen, M., Harkness, T. &
Arnason, T. 2017. Metformin inhibits the development, and promotes the
resensitization, of treatment-resistant breast cancer. PLoS ONE 12(12): e0187191.
Della Corte, C.M.,
Ciaramella, V., Di Mauro, C., Castellone, M.D., Papaccio, F., Fasano, M.,
Sasso, F.C., Martinelli, E., Troiani, T., De Vita, F., Orditura, M., Bianco,
R., Ciardiello, F. & Morgillo, F. 2016. Metformin increases antitumor
activity of MEK inhibitors through GLI1 downregulation in LKB1 positive human
NSCLC cancer cells. Oncotarget 7(4):
4265-4278.
Deng, J., Peng, M.,
Wang, Z., Zhou, S., Xiao, D., Deng, J., Yang, X., Peng, J. & Yang, X. 2019.
Novel application of metformin combined with targeted drugs on anticancer
treatment. Cancer Science 110(1):
23-30.
Diaz-Rodriguez, E.,
Perez-Pena, J., Rios-Luci, C., Arribas, J., Ocana, A. & Pandiella, A. 2019.
TRAIL receptor activation overcomes resistance to trastuzumab in HER2 positive
breast cancer cells. Cancer Letters 453: 34-44.
Ferlay, J.,
Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin,
D.M., Forman, D. & Bray, F. 2015. Cancer incidence and mortality worldwide:
Sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer 136(5): E359-E386.
Franken, N.A.P.,
Rodermond, H.M., Stap, J., Haveman, J. & Bree, C.V. 2006. Clonogenic assay
of cells in vitro. Nature Protocols 1(5): 2315-2319.
Gallagher, E.J. &
LeRoith, D. 2011. Diabetes, cancer, and metformin: Connections of metabolism
and cell proliferation. Annals of the New
York Academy of Sciences 1243(1): 54-68.
Gao, Z.Y., Liu, Z., Bi,
M.H., Zhang, J.J., Han, Z.Q., Han, X., Wang, H.Y., Sun, G.P. & Liu, H.
2016. Metformin induces apoptosis via a mitochondria-mediated pathway in human
breast cancer cells in vitro. Experimental and Therapeutic Medicine 11(5): 1700-1706.
Guo, Z., Sevrioukova,
I.F., Denisov, I.G., Zhang, X., Chiu,
T.L., Thomas, D.G., Hanse, E.A., Cuellar, R.A.D., Grinkova, Y.G., Langenfeld,
V.W., Swedien, D.S., Stamschror, J.D., Alvarez, J., Luna, F., Galvan, A., Bae,
Y.K., Wulfkuhle, J.D., Gallagher, R.I., Rd Petricoin, E.F., Norris, B., Flory,
C.M., Schumacher, R.J., O'Sullivan, M.G., Cao, Q., Chu, H., Lipscomb, J.D.,
Atkins, W.M., Gupta, K., Kelekar, A., Blair, I.A., Capdevila, J.H., Falck,
J.R., Sligar, S.G., Poulos, T.L., Georg, G.I., Ambrose, E. & Potter, D.A.
2017. Heme binding biguanides target cytochrome P450-dependent cancer cell
mitochondria. Cell Chemical Biology 24(10): 1259-1275.
Guzmán, C., Bagga, M.,
Kaur, A., Westermarck, J. & Abankwa, D. 2014. ColonyArea: An ImageJ plugin
to automatically quantify colony formation in clonogenic assays. PLoS ONE 9(3): e92444.
Hacioglu, B., Akin, S.,
Sever, A.R. & Altundag, K. 2015. Clinical implications of intratumoral
heterogeneity of HER2 gene amplification in locally advanced HER2-positive
breast cancer patients. Future Oncology 11(18): 2495-2497.
Hadad, S.M., Hardie,
D.G., Appleyard, V. & Thompson, A.M. 2014. Effects of metformin on breast
cancer cell proliferation, the AMPK pathway and the cell cycle. Clinical and Translational Oncology 16(8): 746-752.
Holliday, D.L. &
Speirs, V. 2011. Choosing the right cell line for breast cancer research. Breast
Cancer Research 13(4): 215.
Iqbal, N. & Iqbal,
N. 2014. Human epidermal growth factor receptor 2 (HER2) in cancers:
Overexpression and therapeutic implications. Molecular Biology International 2014: Article ID. 852748.
Jang, S.Y., Kim, A.,
Kim, J.K., Kim, C., Cho, Y.H., Kim, J.H., Kim, C.H. & Lee, J.Y. 2014.
Metformin inhibits tumor cell migration via down-regulation of MMP9 in
tamoxifen-resistant breast cancer cells. Anticancer
Research 34(8): 4127-4134.
Jiralerspong, S., Palla,
S.L., Giordano, S.H., Meric-Bernstam, F., Liedtke, C., Barnett, C.M., Hsu, L.,
Hung, M.C., Hortobagyi, G.N. & Gonzalez-Angulo, A.M. 2009. Metformin and
pathologic complete responses to neoadjuvant chemotherapy in diabetic patients
with breast cancer. Journal of Clinical
Oncology 27(20): 3297-3302.
Kasznicki, J.,
Sliwinska, A. & Drzewoski, J. 2014. Metformin in cancer prevention and
therapy. Annals of Translational Medicine 2(6): 57.
Lavaud, P. & Andre,
F. 2014. Strategies to overcome trastuzumab resistance in HER2-overexpressing
breast cancers: Focus on new data from clinical trials. BMC Medicine 12: 132.
Li, W.D., Li, N.P.,
Song, D.D., Rong, J.J., Qian, A.M. & Li, X.Q. 2017. Metformin inhibits
endothelial progenitor cell migration by decreasing matrix metalloproteinases,
MMP-2 and MMP-9, via the AMPK/mTOR/autophagy pathway. International Journal of Molecular Medicine 39(5): 1262-1268.
Liu, B., Fan, Z.,
Edgerton, S.M., Yang, X., Lind, S.E. & Thor, A.D. 2011. Potent
anti-proliferative effects of metformin on trastuzumab-resistant breast cancer
cells via inhibition of erbB2/IGF-1 receptor interactions. Cell Cycle 10(17): 2959-2966.
Lord, S.R., Cheng, W.C.,
Liu, D., Gaude, E., Haider, S., Metcalf, T., Patel, N., Teoh, E.J., Gleeson,
F., Bradley, K., Wigfield, S., Zois, C., McGowan, D.R., Ah-See, M.L., Thompson,
A.M., Sharma, A., Bidaut, L., Pollak, M., Roy, P.G., Karpe, F., James, T.,
English, R., Adams, R.F., Campo, L., Ayers, L., Snell, C., Roxanis, I., Frezza,
C., Fenwick, J.D., Buffa, F.M. & Harris, A.L. 2018. Integrated
pharmacodynamic analysis identifies two metabolic adaption pathways to
metformin in breast cancer. Cell
Metabolism 28(5): 679-688.e4.
Malek, M., Aghili, R.,
Emami, Z. & Khamseh, M.E. 2013. Risk of cancer in diabetes: The effect of
metformin. ISRN Endocrinology 2013:
Article ID. 636927.
Marcotte, R., Sayad, A.,
Brown, K.R., Sanchez-Garcia, F., Reimand, J., Haider, M., Virtanen, C.,
Bradner, J.E., Bader, G.D. & Mills, G.D. 2016. Functional genomic landscape
of human breast cancer drivers, vulnerabilities, and resistance. Cell 164(1): 293-309.
Marinello, P.C., Panis,
C., Silva, T.N.X., Binato, R., Abdelhay, E., Rodrigues, J.A., Mencalha, A.L.,
Lopes, N.M.D., Luiz, R.C., Cecchini, R. & Cecchini, A.L. 2019. Metformin
prevention of doxorubicin resistance in MCF-7 and MDA-MB-231 involves oxidative
stress generation and modulation of cell adaptation genes. Scientific
Report 9(1): 5864.
Martin-Castillo, B.,
Dorca, J., Vazquez-Martin, A., Oliveras-Ferraros, C., Lopez-Bonet, E., Garcia,
M., Barco, S.D. & Menendez, J.A. 2010. Incorporating the antidiabetic drug
metformin in HER2-positive breast cancer treated with neo-adjuvant chemotherapy
and trastuzumab: An ongoing clinical-translational research experience at the
Catalan Institute of Oncology. Annals of
Oncology 21(1): 187-189.
Parker, J.S., Mullins,
M., Cheang, M.C.U., Leung, S., Voduc, D., Vickery, S., Davies, S., Fauron, C.,
He, X. & Hu, Z. 2009. Supervised risk predictor of breast cancer based on
intrinsic subtypes. Journal of Clinical
Oncology 27(8): 1160-1167.
Pernicova, I. &
Korbonits, M. 2014. Metformin--mode of action and clinical implications for
diabetes and cancer. Nature Reviews
Endocrinology 10(3): 143-156.
Pierro, J., Saba, C.,
McLean, K., Williams, R., Karpuzoglu, E., Prater, R., Hoover, K. & Gogal,
R. 2017. Anti-proliferative effect of metformin on a feline injection site
sarcoma cell line independent of Mtor inhibition. Research in Veterinary Science 114: 74-79.
Quattrini, I., Conti,
A., Pazzaglia, L., Novello, C., Ferrari, S., Picci, P. & Benassi, M.S.
2014. Metformin inhibits growth and sensitizes osteosarcoma cell lines to
cisplatin through cell cycle modulation. Oncology
Reports 31(1): 370-375.
Rezano, A., Kuwahara,
K., Yamamoto-Ibusuki, M., Kitabatake, M., Moolthiya, P., Phimsen, S., Suda, T.,
Tone, S., Yamamoto, Y., Iwase, H. & Sakaguchi, N. 2013. Breast cancers with
high DSS1 expression that potentially maintains BRCA2 stability have poor
prognosis in the relapse-free survival. BMC
Cancer 13: 562.
Scherbakov, A.M.,
Sorokin, D.V., Tatarskiy Jr., V.V., Prokhorov, N.S., Semina, S.E., Berstein,
L.M. & Krasil'nikov, M.A. 2016. The phenomenon of acquired resistance to
metformin in breast cancer cells: The interaction of growth pathways and
estrogen receptor signaling. IUBMB Life 68(4): 281-292.
Sharma, A., Bandyopadhayaya,
S., Chowdhury, K., Sharma, T., Maheshwari, R., Das, A., Chakrabarti, G., Kumar,
V. & Mandal, C.C. 2019. Metformin exhibited anticancer activity by lowering
cellular cholesterol content in breast cancer cells. PLoS ONE 14(1): e0209435.
Sharma, G.N., Dave, R.,
Sanadya, J., Sharma, P. & Sharma, K.K. 2010. Various types and management
of breast cancer: An overview. Journal of
Advanced Pharmaceutical and Technological Research 1(2): 109-126.
Silvestri, A., Palumbo,
F., Rasi, I., Posca, D., Pavlidou, T., Paoluzi, S., Castagnoli, L. &
Cesareni, G. 2015. Metformin induces apoptosis and downregulates pyruvate
kinase M2 in breast cancer cells only when grown in nutrient-poor conditions. PLoS ONE 10(8): e0136250.
Strober, W. 2015. Trypan
blue exclusion test of cell viability. Current
Protocols in Immunology 111: A3.B.1-A3.B.3.
Subik, K., Lee, J.F.,
Baxter, L., Strzepek, T., Costello, D., Crowley, P., Xing, L., Hung, M.C.,
Bonfiglio, T., Hicks, D.G. & Tang, P. 2010. The expression patterns of ER,
PR, HER2, CK5/6, EGFR, Ki-67 and AR by immunohistochemical analysis in breast
cancer cell lines. Breast Cancer 4:
35-41.
Vazquez-Martin, A.,
Oliveras-Ferraros, C., Del Barco, S., Martin-Castillo, B. & Menendez, J.A.
2011. The anti-diabetic drug metformin suppresses self-renewal and
proliferation of trastuzumab-resistant tumor-initiating breast cancer stem
cells. Breast Cancer Research Treatment 126(2): 355-364.
Viollet, B., Guigas, B.,
Garcia, N.S., Leclerc, J., Foretz, M. & Andreelli, F. 2012. Cellular and
molecular mechanisms of metformin: An overview. Clinical science 122(6): 253-270.
Wahidin, M., Noviani,
R., Hermawan, S., Andriani, V., Ardian, A. & Djarir, H. 2012.
Population-based cancer registration in Indonesia. Asian Pacific Journal of Cancer Prevention 13(4): 1709-1710.
Wang, L.W., Li, Z.S.,
Zou, D.W., Jin, Z.D., Gao, J. & Xu, G.M. 2008. Metformin induces apoptosis
of pancreatic cancer cells. World Journal
of Gastroenterology 14(47): 7192-7198.
Zhu, P., Davis, M.,
Blackwelder, A.J., Bachman, N., Liu, B., Edgerton, S., Williams, L.L., Thor,
A.D. & Yang, X. 2014. Metformin selectively targets tumor-initiating cells
in ErbB2-overexpressing breast cancer models. Cancer Prevention Research 7(2): 199-210.
*Pengarang untuk surat-menyurat; email: fathul@unpad.ac.id
|