Sains Malaysiana 51(10)(2022): 3307-3320

http://doi.org/10.17576/jsm-2022-5110-16

 

Optimization, Kinetics Isotherm, and Reusability Studies of Methylene Blue Dye Adsorption using Acrylic Acid Grafted Rubber Hydrogel

(Pengoptimuman, Isoterma Kinetik dan Kajian Kebolehgunaan Semula Penjerapan Pewarna Biru Metilena menggunakan Hidrogel Getah Cantuman Asid Akrilik)

 

SITI FAIRUS M. YUSOFF1,2,*, FAZIRA FIRDAUS1, NUR ADLY AHMAD ZAHIDI1 & NURUL HUDA ABDUL HALIM1

                                                                                                                 

1Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Polymer Research Centre (PORCE), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 16 Mac 2021/Diterima: 14 Jun 2022

 

Abstract

Hydrogel based on liquid natural rubber (LNR) crosslinked with acrylic acid (AAc) was synthesised and applied for the adsorption of methylene blue (MB) in aqueous solutions. The LNR/AAc hydrogel was prepared by free-radical polymerisation using potassium persulfate (KPS) and N,N-methylenebisacrylamide (MBA) as the initiator and the crosslinking agent, respectively. The effect of three variables (i.e., AAc:LNR weight ratio, KPS concentration and MBA concentration) on the hydrogel preparation for MBA removal was further investigated using response surface methodology (RSM). A quadratic polynomial model with the analysis of variance (ANOVA) results yielding R2 value of 0.9833 was consequently obtained. The optimum conditions for the hydrogel preparation were identified as AAc:LNR weight ratio of 2.59 g/g, KPS concentration of 0.08 M and MBA concentrations of 0.08 M and resulting a high percentage of MB removal about 92.57% was obtained. Therefore, the kinetic and isotherm models of MB removal were represented by the pseudo-second order and Freundlich model, respectively, and reusability studies were also investigated resulting in the hydrogel can be used up to four cycles.

 

Keywords: Adsorption; dye removal; polymer gels; rubber; response surface methodology

 

Abstrak

Hidrogel berasaskan getah asli cecair (LNR) yang ditaut silang dengan asid akrilik (AAc) telah disintesis dan digunakan untuk penjerapan metilena biru (MB) dalam larutan akueus. Hidrogel LNR/AAc telah disediakan melalui pempolimeran radikal bebas menggunakan kalium persulfat (KPS) dan N,N-metilenabisakrilamida (MBA) sebagai pemula bersama agen taut silang. Kesan tiga pemboleh ubah iaitu (nisbah berat AAc:LNR, kepekatan KPS dan kepekatan MBA) ke atas penyediaan hidrogel untuk penyingkiran MB telah dikaji selanjutnya menggunakan kaedah rangsangan permukaan tindak balas (RSM). Model polinomial kuadratik dengan keputusan analisis varians (ANOVA) yang menghasilkan nilai pekali penentuan, R2 sebanyak 0.9833 telah diperoleh. Keadaan optimum untuk penyediaan hidrogel dikenal pasti iaitu nisbah berat AAc:LNR 2.59 g/g, kepekatan KPS 0.08 M dan kepekatan MBA 0.08 M dengan peratusan penyingkiran MB yang tinggi sebanyak 92.57%. Oleh itu, model kinetik dan isoterma bagi penyingkiran MB diwakili oleh tertib pseudo kedua dan model Freundlich. Tambahan pula, kajian kebolehgunaan semula hidrogel turut dikaji dan didapati hidrogel boleh digunakan sehingga empat kitaran dalam penyingkiran MB.

 

Kata kunci: Getah; gel polimer; kaedah rangsangan permukaan tindak balas; penjerapan; penyingkiran pewarna

 

RUJUKAN

Abdel-Halim, E.S. & Al-deyab, S.S. 2014. Preparation of poly (acrylic acid)/starch hydrogel and its application for cadmium ion removal from aqueous solutions. Reactive and Functional Polymers 75: 1-8.

Ahmad, N.H., Mohamed, M.A. & M. Yusoff, S.F. 2020. Improved adsorption performance of rubber-based hydrogel: optimisation through response surface methodology, isotherm, and kinetic studies. Journal of Sol-Gel Science and Technology 94(2): 322-334.

Allouss, D., Essamlali, Y., Amadine, O., Chakir, A. & Zahouily, M. 2019. response surface methodology for optimization of methylene blue adsorption onto carboxymethyl. RSC Advances 9(65): 37858-37869.

Amnuaypanich, S. & Kongchana, N. 2009. Natural rubber/poly (acrylic acid) semi-interpenetrating polymer network membranes for the pervaporation of water - ethanol mixtures. Journal of Applied Polymer Science 114(6): 3501-3509.

Airul Ashri, Nurul Amalina, Akhan Kamil, Shazrul Fazry, M. Fareed Sairi, Muhammad Faizan Nazar & Azwan Mat Lazim. 2018. Modified Dioscorea hispida starch-based hydrogels and their in-vitro cytotoxicity study on small intestine cell line (FHS-74 Int). International Journal of Biological Macromolecules 107(Pt B): 2412-2421.

Aiza Jaafar, C.N., Zainol, I., Ishak, N.S., Ilyas, R.A. & Sapuan, S.M. 2021. Effects of the liquid natural rubber (LNR) on mechanical properties and microstructure of epoxy/silica/kenaf hybrid composite for potential automotive applications. Journal of Materials Research and Technology 12: 1026-1038.

Bao, Z., Xian, C., Yuan, Q., Liu, G. & Wu, J. 2019. Natural polymer-based hydrogels with enhanced mechanical performances: Preparation, structure, and property. Advanced Healthcare Materials 8(17): e1900670.

Bhattacharyya, R. & Ray, S.K. 2015. Removal of congo red and methyl violet from water using nano clay filled composite hydrogels of poly acrylic acid and polyethylene glycol. Chemical Engineering Journal 260: 269-283.

Clarke, F.W. & Langmuir, I.B. 1916. Constitution of solids and liquids. J. Am. Chem. Soc. 38(11): 2221-2295.

Du, H., Shi, S., Liu, W., Teng, H. & Piao, M. 2020. Processing and modification of hydrogel and its application in emerging contaminant adsorption and in catalyst immobilization: A review. Environmental Science and Pollution Research 27(12): 12967-12994.

Firdaus, F., Idris, M.S.F. & M. Yusoff, S.F. 2019. Adsorption of nickel ion in aqueous using rubber ‑ Based hydrogel. Journal of Polymers and the Environment 27: 1770-1780.

Fosso-Kankeu, E., Mittal, H., Waanders, F. & Sinha Ray, S. 2017. Thermodynamic properties and adsorption behaviour of hydrogel nanocomposites for cadmium removal from mine effluents. Journal of Industrial and Engineering Chemistry 48: 151-161.

Gürses, A., Doğar, Ç., Yalçin, M., Açikyldiz, M., Bayrak, R. & Karaca, S. 2006. The adsorption kinetics of the cationic dye, methylene blue, onto clay. Journal of Hazardous Materials 131(1-3): 217-228.

He, S., Zhang, F., Cheng, S. & Wang, W. 2016. Synthesis of sodium acrylate and acrylamide copolymer/GO hydrogels and their effective adsorption for Pb2+ and Cd2+. ACS Sustainable Chemistry and Engineering 4(7): 3948-3959.

Ho, Y.S. & McKay, G. 1999. Pseudo-second order model for sorption processes. Process Biochemistry 34(5): 451-465.

Jamaluddin, N., Mohd Yusof, M.J., Abdullah, I. & M. Yusoff, S.F. 2016. Synthesis, characterization, and properties of hydrogenated liquid natural rubber. Rubber Chemistry and Technology 89(2): 227-239.

Jamnongkan, T., Kantarot, K., Niemtang, K., Pansila, P. & Wattanakornsiri, A. 2014. Kinetics and mechanism of adsorptive removal of copper from aqueous solution with poly(vinyl alcohol) hydrogel. Transactions of Nonferrous Metals Society of China (English Edition) 24(10): 3386-3393.

Jeyagowri, B. & Yamuna, R.T. 2015. Biosorption of methylene blue from aqueous solutions by modified. Global Nest Journal 17(4): 701-715.

Krishnamoorthy, M., Ahmad, N.H., Amran, H.N., Mohamed, M.A., Mohd Kaus, N.H. & M. Yusoff, S.F. 2021. BiFeO3 immobilized within liquid natural rubber-based hydrogel with enhanced adsorption-photocatalytic performance. International Journal of Biological Macromolecules 182: 1495-1506.

Lagergren, S.K. 1898. About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl 24: 1-39.

Langmuir, I. 1917. The constitution and fundamental properties of solids and liquids. Part II.-Liquids. Journal of the Franklin Institute 184(5): 721.

Lazim, A.M., Musbah, D.L., Chin, C.C., Abdullah, I., Abdul Mustapa, M.H. & Azfaralariff, A.  2019. Oil removal from water surface using reusable and absorptive foams via simple fabrication of liquid natural rubber (LNR). Polymer Testing 73: 39-50.

Maijan, P., Junlapong, K., Arayaphan, J., Khaokong, C. & Chantarak, S. 2021. Synthesis and characterization of highly elastic superabsorbent natural rubber/polyacrylamide hydrogel. Polymer Degradation and Stability 186: 109499.

Mandal, B. & Ray, S.K. 2014. Swelling, diffusion, network parameters and adsorption properties of IPN hydrogel of chitosan and acrylic copolymer. Materials Science and Engineering C 44: 132-143.

Mathew, P., Sasidharan, D. & Rakesh, N.P. 2020. Copper(I) stabilized on N,N′-methylene bis-acrylamide crosslinked polyvinylpyrrolidone: An efficient reusable catalyst for click synthesis of 1,2,3-triazoles in water. Applied Organometallic Chemistry 34(7): e5642.

Mohd Noor, N.F. & Yusoff, S.F.M. 2020. Ultrasonic-enhanced synthesis of rubber-based hydrogel for waste water treatment: Kinetic, isotherm and reusability studies. Polymer Testing 81: 106200.

Nakason, C., Kaesaman, A. & Supasanthitikul, P. 2004. The grafting of maleic anhydride onto natural rubber. Polymer Testing 23(1): 35-41.

Ozdes, D., Duran, C., Senturk, H.B., Avan, H. & Bicer, B. 2014. Kinetics, thermodynamics, and equilibrium evaluation of adsorptive removal of methylene blue onto natural illitic clay mineral. Desalination and Water Treatment 52(1-3): 208-218.

Pereira, A.G.B., Rodrigues, F.H.A., Paulino, A.T., Martins, A.F. & Fajardo, A.R. 2021. Recent advances on composite hydrogels designed for the remediation of dye-contaminated water and wastewater: A review. Journal of Cleaner Production 284: 124703.

Pongsathit, S. & Pattamaprom, C. 2018. Irradiation grafting of natural rubber latex with maleic anhydride and its compatibilization of poly (lactic acid)/natural rubber blends. Radiation Physic and Chemistry 144: 13-20.

Rajasulochana, P. & Preethy, V. 2016. Comparison on efficiency of various techniques in treatment of waste and sewage water - A comprehensive review. Resource-Efficient Technologies 2(4): 175-184.

Sharifpour, E., Khafri, H.Z., Ghaedi, M., Asfaram, A. & Jannesar, R. 2018. Isotherms and kinetic study of ultrasound-assisted adsorption of malachite green and Pb2+ ions from aqueous samples by copper sulfide nanorods loaded on activated carbon: Experimental design optimization. Ultrasonics Sonochemistry 40: 373-382.

Singh, N., Agarwal, S., Jain, A. & Khan, S. 2021. 3-Dimensional cross linked hydrophilic polymeric network “hydrogels”: An agriculture boom. Agricultural Water Management 253: 106939.

Sukumar, P. & Nair, M.R.G. 2014. Transport studies of hydrogels based on natural rubber and polyethylene oxide in cationic dye solutions. Research Journal of Recent Sciences 3: 352-361.

Tran, H.N., You, S.J., Hosseini-Bandegharaei, A. & Chao, H.P. 2017. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Research 120: 88-116.

Wang, L., Zhang, J. & Wang, A. 2011. Fast removal of methylene blue from aqueous solution by adsorption onto chitosan-g-poly (acrylic acid)/attapulgite composite. Desalination 266(1-3): 33-39.

Wongthep, W., Srituileong, S., Martwiset, S. & Amnuaypanich, S. 2012. Grafting of poly (vinyl alcohol) on natural rubber latex particles. Journal of Applied Polymer Science 127(1): 104-110.

Yan, B., Chen, Z., Cai, L., Chen, Z., Fu, J. & Xu, Q. 2015. Fabrication of polyaniline hydrogel: Synthesis, characterization and absorption of Methylene Blue. Applied Surface Science 356: 39-47.

Yang, Z., Peng, H., Wang, W. & Liu, T. 2010. Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. Journal of Applied Polymer Science 116(5): 2658-2667.

Zainal, S.H., Mohd, N.H., Suhaili, N., Anuar, F.H., Lazim, A.M. & Othaman, R. 2021. Preparation of cellulose-based hydrogel: A review. Journal of Materials Research and Technology 10: 935-952.

Zhang, M., Zhang, S., Chen, Z., Wang, M., Cao, J. & Wang, R. 2019. Preparation and characterization of superabsorbent polymers based on sawdust. Polymers 11(11): 1891.

Zhou, C., Wu, Q., Lei, T. & Negulescu, I.I. 2014. Adsorption kinetic and equilibrium studies for methylene blue dye by partially hydrolyzed polyacrylamide/cellulose nanocrystal nanocomposite hydrogels. Chemical Engineering Journal 251: 17-24.

 

*Pengarang untuk surat-menyurat; email: sitifairus@ukm.edu.my

 

 

 

 

   

sebelumnya