Sains Malaysiana 51(10)(2022):
3307-3320
http://doi.org/10.17576/jsm-2022-5110-16
Optimization, Kinetics Isotherm, and Reusability Studies of Methylene
Blue Dye Adsorption using Acrylic Acid Grafted Rubber Hydrogel
(Pengoptimuman, Isoterma Kinetik dan Kajian Kebolehgunaan Semula Penjerapan Pewarna Biru Metilena menggunakan Hidrogel Getah Cantuman Asid Akrilik)
SITI
FAIRUS M. YUSOFF1,2,*, FAZIRA FIRDAUS1,
NUR ADLY AHMAD ZAHIDI1 & NURUL HUDA
ABDUL HALIM1
1Department
of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Polymer
Research Centre (PORCE), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Diserahkan: 16 Mac 2021/Diterima: 14 Jun 2022
Abstract
Hydrogel
based on liquid natural rubber (LNR) crosslinked with acrylic acid (AAc) was synthesised and applied for the adsorption of
methylene blue (MB) in aqueous solutions. The LNR/AAc hydrogel was prepared by free-radical polymerisation using potassium persulfate
(KPS) and N,N-methylenebisacrylamide (MBA) as the initiator and the crosslinking agent, respectively. The effect of
three variables (i.e., AAc:LNR weight ratio, KPS concentration and MBA concentration) on the hydrogel
preparation for MBA removal was further investigated using response surface
methodology (RSM). A quadratic polynomial model with the analysis of variance
(ANOVA) results yielding R2 value of 0.9833 was consequently
obtained. The optimum conditions for the hydrogel preparation were identified
as AAc:LNR weight ratio of
2.59 g/g, KPS concentration of 0.08 M and MBA concentrations of 0.08 M and
resulting a high percentage of MB removal about 92.57% was obtained. Therefore,
the kinetic and isotherm models of MB removal were represented by the
pseudo-second order and Freundlich model, respectively, and reusability studies
were also investigated resulting in the hydrogel can be used up to four cycles.
Keywords: Adsorption; dye removal;
polymer gels; rubber; response surface methodology
Abstrak
Hidrogel berasaskan getah asli cecair (LNR) yang ditaut silang dengan asid akrilik (AAc) telah disintesis dan digunakan untuk penjerapan metilena biru (MB) dalam larutan akueus. Hidrogel LNR/AAc telah disediakan melalui pempolimeran radikal bebas menggunakan kalium persulfat (KPS) dan N,N-metilenabisakrilamida (MBA) sebagai pemula bersama agen taut silang. Kesan tiga pemboleh ubah iaitu (nisbah berat AAc:LNR, kepekatan KPS dan kepekatan MBA) ke atas penyediaan hidrogel untuk penyingkiran MB telah dikaji selanjutnya menggunakan kaedah rangsangan permukaan tindak balas (RSM). Model polinomial kuadratik dengan keputusan analisis varians (ANOVA) yang menghasilkan nilai pekali penentuan, R2 sebanyak 0.9833 telah diperoleh. Keadaan optimum untuk penyediaan hidrogel dikenal pasti iaitu nisbah berat AAc:LNR 2.59 g/g, kepekatan KPS 0.08 M dan kepekatan MBA 0.08 M dengan peratusan penyingkiran MB yang tinggi sebanyak 92.57%. Oleh itu, model kinetik dan isoterma bagi penyingkiran MB diwakili oleh tertib pseudo kedua dan model Freundlich. Tambahan pula, kajian kebolehgunaan semula hidrogel turut dikaji dan didapati hidrogel boleh digunakan sehingga empat kitaran dalam penyingkiran MB.
Kata kunci: Getah; gel polimer; kaedah rangsangan permukaan tindak balas; penjerapan; penyingkiran pewarna
RUJUKAN
Abdel-Halim, E.S. & Al-deyab, S.S. 2014. Preparation of poly (acrylic
acid)/starch hydrogel and its application for cadmium ion removal from aqueous
solutions. Reactive and Functional Polymers 75: 1-8.
Ahmad, N.H., Mohamed, M.A. & M. Yusoff, S.F. 2020. Improved adsorption
performance of rubber-based hydrogel: optimisation through response surface
methodology, isotherm, and kinetic studies. Journal of Sol-Gel Science and
Technology 94(2): 322-334.
Allouss, D., Essamlali, Y., Amadine, O., Chakir, A. & Zahouily, M.
2019. response surface methodology for optimization of methylene blue
adsorption onto carboxymethyl. RSC Advances 9(65): 37858-37869.
Amnuaypanich, S. & Kongchana, N. 2009. Natural rubber/poly (acrylic
acid) semi-interpenetrating polymer network membranes for the pervaporation of
water - ethanol mixtures. Journal of Applied Polymer Science 114(6):
3501-3509.
Airul Ashri, Nurul Amalina, Akhan Kamil, Shazrul Fazry, M. Fareed Sairi,
Muhammad Faizan Nazar & Azwan Mat Lazim. 2018. Modified Dioscorea hispida starch-based hydrogels and their in-vitro cytotoxicity study on small
intestine cell line (FHS-74 Int). International Journal of Biological
Macromolecules 107(Pt B): 2412-2421.
Aiza Jaafar, C.N., Zainol, I., Ishak, N.S., Ilyas, R.A. & Sapuan, S.M.
2021. Effects of the liquid natural rubber (LNR) on mechanical properties and
microstructure of epoxy/silica/kenaf hybrid composite for potential automotive
applications. Journal of Materials Research and Technology 12:
1026-1038.
Bao, Z., Xian, C., Yuan, Q., Liu, G. & Wu, J. 2019. Natural
polymer-based hydrogels with enhanced mechanical performances: Preparation,
structure, and property. Advanced Healthcare Materials 8(17): e1900670.
Bhattacharyya, R. & Ray, S.K. 2015. Removal of congo red and methyl
violet from water using nano clay filled composite hydrogels of poly acrylic
acid and polyethylene glycol. Chemical Engineering Journal 260: 269-283.
Clarke, F.W. & Langmuir, I.B. 1916. Constitution of solids and
liquids. J. Am. Chem. Soc. 38(11): 2221-2295.
Du, H., Shi, S., Liu, W., Teng, H. & Piao, M. 2020. Processing and
modification of hydrogel and its application in emerging contaminant adsorption
and in catalyst immobilization: A review. Environmental Science and
Pollution Research 27(12): 12967-12994.
Firdaus, F., Idris, M.S.F. & M. Yusoff, S.F. 2019. Adsorption of
nickel ion in aqueous using rubber ‑ Based hydrogel. Journal of
Polymers and the Environment 27: 1770-1780.
Fosso-Kankeu, E., Mittal, H., Waanders, F. & Sinha Ray, S. 2017.
Thermodynamic properties and adsorption behaviour of hydrogel nanocomposites
for cadmium removal from mine effluents. Journal of Industrial and
Engineering Chemistry 48: 151-161.
Gürses, A., Doğar, Ç.,
Yalçin, M., Açikyldiz, M., Bayrak, R. & Karaca, S. 2006. The adsorption
kinetics of the cationic dye, methylene blue, onto clay. Journal of
Hazardous Materials 131(1-3): 217-228.
He, S., Zhang, F., Cheng, S. & Wang, W. 2016. Synthesis of sodium
acrylate and acrylamide copolymer/GO hydrogels and their effective adsorption
for Pb2+ and Cd2+. ACS Sustainable Chemistry and
Engineering 4(7): 3948-3959.
Ho, Y.S. & McKay, G. 1999. Pseudo-second order model for sorption
processes. Process Biochemistry 34(5): 451-465.
Jamaluddin, N., Mohd Yusof, M.J., Abdullah, I. & M. Yusoff, S.F. 2016.
Synthesis, characterization, and properties of hydrogenated liquid natural
rubber. Rubber Chemistry and Technology 89(2): 227-239.
Jamnongkan, T., Kantarot, K., Niemtang, K., Pansila, P. &
Wattanakornsiri, A. 2014. Kinetics and mechanism of adsorptive removal of
copper from aqueous solution with poly(vinyl alcohol) hydrogel. Transactions
of Nonferrous Metals Society of China (English Edition) 24(10): 3386-3393.
Jeyagowri, B. & Yamuna, R.T. 2015. Biosorption of methylene blue from
aqueous solutions by modified. Global Nest Journal 17(4): 701-715.
Krishnamoorthy, M., Ahmad, N.H., Amran, H.N., Mohamed, M.A., Mohd Kaus,
N.H. & M. Yusoff, S.F. 2021. BiFeO3 immobilized within liquid
natural rubber-based hydrogel with enhanced adsorption-photocatalytic
performance. International Journal of Biological Macromolecules 182:
1495-1506.
Lagergren, S.K. 1898. About the theory of so-called adsorption of soluble
substances. Sven. Vetenskapsakad. Handingarl 24: 1-39.
Langmuir, I. 1917. The constitution and fundamental properties of solids
and liquids. Part II.-Liquids. Journal of the Franklin Institute 184(5):
721.
Lazim, A.M., Musbah, D.L., Chin, C.C., Abdullah, I., Abdul Mustapa, M.H.
& Azfaralariff, A. 2019. Oil removal
from water surface using reusable and absorptive foams via simple fabrication
of liquid natural rubber (LNR). Polymer Testing 73: 39-50.
Maijan, P., Junlapong, K., Arayaphan, J., Khaokong, C. & Chantarak, S.
2021. Synthesis and characterization of highly elastic superabsorbent natural
rubber/polyacrylamide hydrogel. Polymer Degradation and Stability 186:
109499.
Mandal, B. & Ray, S.K. 2014. Swelling, diffusion, network parameters
and adsorption properties of IPN hydrogel of chitosan and acrylic copolymer. Materials
Science and Engineering C 44: 132-143.
Mathew, P., Sasidharan, D. & Rakesh, N.P. 2020. Copper(I) stabilized
on N,N′-methylene bis-acrylamide crosslinked polyvinylpyrrolidone: An
efficient reusable catalyst for click synthesis of 1,2,3-triazoles in water. Applied
Organometallic Chemistry 34(7): e5642.
Mohd Noor, N.F. & Yusoff, S.F.M. 2020. Ultrasonic-enhanced synthesis
of rubber-based hydrogel for waste water treatment: Kinetic, isotherm and
reusability studies. Polymer Testing 81: 106200.
Nakason, C., Kaesaman, A. & Supasanthitikul, P. 2004. The grafting of
maleic anhydride onto natural rubber. Polymer Testing 23(1): 35-41.
Ozdes, D., Duran, C., Senturk, H.B., Avan, H. & Bicer, B. 2014.
Kinetics, thermodynamics, and equilibrium evaluation of adsorptive removal of
methylene blue onto natural illitic clay mineral. Desalination and Water
Treatment 52(1-3): 208-218.
Pereira, A.G.B., Rodrigues, F.H.A., Paulino, A.T., Martins, A.F. &
Fajardo, A.R. 2021. Recent advances on composite hydrogels designed for the
remediation of dye-contaminated water and wastewater: A review. Journal of
Cleaner Production 284: 124703.
Pongsathit, S. & Pattamaprom, C. 2018. Irradiation grafting of natural
rubber latex with maleic anhydride and its compatibilization of poly (lactic
acid)/natural rubber blends. Radiation Physic and Chemistry 144: 13-20.
Rajasulochana, P. & Preethy, V. 2016. Comparison on efficiency of
various techniques in treatment of waste and sewage water - A comprehensive
review. Resource-Efficient Technologies 2(4): 175-184.
Sharifpour, E., Khafri, H.Z., Ghaedi, M., Asfaram, A. & Jannesar, R.
2018. Isotherms and kinetic study of ultrasound-assisted adsorption of
malachite green and Pb2+ ions from aqueous samples by copper sulfide
nanorods loaded on activated carbon: Experimental design optimization. Ultrasonics
Sonochemistry 40: 373-382.
Singh, N., Agarwal, S., Jain, A. & Khan, S. 2021. 3-Dimensional cross
linked hydrophilic polymeric network “hydrogels”: An agriculture boom. Agricultural
Water Management 253: 106939.
Sukumar, P. & Nair, M.R.G. 2014. Transport studies of hydrogels based
on natural rubber and polyethylene oxide in cationic dye solutions. Research
Journal of Recent Sciences 3: 352-361.
Tran, H.N., You, S.J., Hosseini-Bandegharaei, A. & Chao, H.P. 2017.
Mistakes and inconsistencies regarding adsorption of contaminants from aqueous
solutions: A critical review. Water Research 120: 88-116.
Wang, L., Zhang, J. & Wang, A. 2011. Fast removal of methylene blue
from aqueous solution by adsorption onto chitosan-g-poly (acrylic
acid)/attapulgite composite. Desalination 266(1-3): 33-39.
Wongthep, W., Srituileong, S., Martwiset, S. & Amnuaypanich, S. 2012.
Grafting of poly (vinyl alcohol) on natural rubber latex particles. Journal
of Applied Polymer Science 127(1): 104-110.
Yan, B., Chen, Z., Cai, L., Chen, Z., Fu, J. & Xu, Q. 2015.
Fabrication of polyaniline hydrogel: Synthesis, characterization and absorption
of Methylene Blue. Applied Surface Science 356: 39-47.
Yang, Z., Peng, H., Wang, W. & Liu, T. 2010. Crystallization behavior
of poly(ε-caprolactone)/layered double hydroxide nanocomposites. Journal
of Applied Polymer Science 116(5): 2658-2667.
Zainal, S.H., Mohd, N.H., Suhaili, N., Anuar, F.H., Lazim, A.M. &
Othaman, R. 2021. Preparation of cellulose-based hydrogel: A review. Journal
of Materials Research and Technology 10: 935-952.
Zhang, M., Zhang, S., Chen, Z., Wang, M., Cao, J. & Wang, R. 2019.
Preparation and characterization of superabsorbent polymers based on sawdust. Polymers 11(11): 1891.
Zhou, C., Wu, Q., Lei, T. & Negulescu, I.I. 2014. Adsorption kinetic
and equilibrium studies for methylene blue dye by partially hydrolyzed
polyacrylamide/cellulose nanocrystal nanocomposite hydrogels. Chemical
Engineering Journal 251: 17-24.
*Pengarang untuk
surat-menyurat; email: sitifairus@ukm.edu.my
|