Sains Malaysiana 51(10)(2022):
3321-3332
http://doi.org/10.17576/jsm-2022-5110-17
Estimation of Proximate, Fatty
Acid, Mineral Content and Proline Level in Amaranth using Near Infrared
Reflectance Spectroscopy
(Anggaran Proksimat, Asid Lemak, Kandungan Mineral dan Tahap Prolin dalam Amaranth menggunakan Spektroskopi Pemantulan Inframerah Dekat)
AYLIN
CELILE OLUK*
Eastern
Mediterranean Agricultural Research Institute, Yüregir,
Adana, Turkey
Diterima: 8 Oktober 2021/Diserahkan: 18 Mei
2022
Abstract
For
successful development of new amaranth varieties, it is important to find
inexpensive and rapid analysis methods for the measurement of proximate, fatty
acid, mineral content, and proline level in seeds. In this study, calibration
equations in NIR spectroscopy were developed to estimate for the fatty acid,
mineral content and proline level of amaranth using the modified partial least
squares (MPLS) regression method. The calibrations estimated by NIR
spectroscopy were consistent with the correlations between reference values at
external validation. The equations developed were evaluated based on the
relative estimate determination results for external validation (RPDv). The equations for total protein (RPDv = 2.967), fat (RPDv = 4.396), Zn (RPDv = 3.668), proline (RPDv = 6.692), oleic acid (RPDv = 3.366) and linoleic acid (RPDv = 2.086) showed high accuracy, while the equations for ash (RPDv = 1.675) and Fe (RPDv = 1.565) showed relatively high
accuracy. When calculated with the same validation factors, the level of Ca (RPDv = 0.268), palmitic acid (RPDv = 1.434), stearic acid (RPDv = 0.949), linolenic acid
(RPDv = 1.244) and arachidic acid (RPDv = 0.402) were lower than the estimated value. Protein,
oil, ash, Fe, Zn, proline, oleic acid and linoleic acid can be used as reliable
users, while equations developed for Ca, palmitic acid, stearic acid, linolenic
acid and arachidic acid can be reliably used to screen samples for amaranth
breeding programmes.
Keywords: Calibration; fatty
acids; minerals; near-ınfrared reflectance spectroscopy; proline
AbstraK
Bagi mencapai kejayaan pembangunan varieti amaranth baru, adalah penting untuk mencari kaedah analisis yang murah dan pantas untuk pengukuran proksimat, asid lemak, kandungan mineral dan tahap prolin dalam benih. Dalam kajian ini, persamaan penentukuran spektroskopi NIR telah dibangunkan untuk menganggar asid lemak, kandungan mineral dan tahap prolin amaranth menggunakan kaedah regresi separa terkecil (MPLS) yang terubah suai. Penentukuran yang dianggarkan oleh spektroskopi NIR adalah tekal dengan korelasi antara nilai rujukan pada pengesahan luaran. Persamaan yang dibangunkan telah dinilai berdasarkan keputusan penentuan anggaran relatif untuk pengesahan luaran (RPDv). Persamaan untuk jumlah protein (RPDv = 2.967),
lemak (RPDv = 4.396), Zn (RPDv = 3.668), prolin (RPDv =
6.692), asid oleik (RPDv = 3.366) dan asid linoleik (RPDv = 2.086) menunjukkan ketepatan yang tinggi manakala persamaan untuk abu (RPDv = 1.675) dan Fe (RPDv = 1.565) menunjukkan ketepatan yang agak tinggi. Apabila dihitung dengan faktor pengesahan yang sama, paras Ca (RPDv = 0.268), asid palmitik (RPDv = 1.434), asid stearik (RPDv = 0.949), asid linolenik (RPDv = 1.244) dan asid arakidik (RPDv = 0.402) adalah lebih rendah daripada nilai anggaran. Protein, minyak, abu, Fe, Zn, prolin, asid oleik dan asid linoleik boleh digunakan sebagai pengguna yang boleh dipercayai, manakala persamaan yang dibangunkan untuk Ca, asid palmitik, asid stearik, asid linolenik dan asid arakidik boleh digunakan dengan pasti untuk menyaring sampel untuk program pembiakan amaranth.
Kata kunci: Asid lemak; mineral; penentukuran; prolin; spektroskopi pemantulan inframerah dekat
RUJUKAN
Acosta, J.J., Castillo, M.S. & Hodge, G.R.
2020. Comparison
of benchtop and handheld near-infrared spectroscopy devices to determine forage
nutritive value. Crop Science 60(6):
3410-3422.
Aditya, K., Saputro, A.H. & Handayani, W. 2018. Enhancement of visible-NIR imaging
prediction system using genetic algorithm: Prediction of carotenoid content in Amaranthus sp. leaf. 2018 International Conference on Electrical Engineering and
Informatics (ICELTICs). pp. 106-110. doi:
10.1109/ICELTICS.2018.8548868.
AOAC
2005. Official Methods of Analysis of the
AOAC. 18th ed. Methods 990.03;942.05; 922.02; 975.03.
Association of Official Analytical Chemists. Arlington, VA, USA.
AOCS
2005. Method Ce 1-62. Fatty Acid
Composition by Gas Chromatography. AOCS Methods American
Oil Chemists Society.
Barba
de la Rosa, A.P., Fomsgaard, I.S., Laursen, B., Mortensen, A.G., Olvera-Martınez, L.,
Silva-Sanchez, C., Mendoza-Herrera, A., Gonzalez Casta~neda,
J. & De Leon-Rodrıguez A. 2009. Amaranth (Amaranthus hypochondriacus) as an
alternative crop for sustainable food production: phenolic acids and flavonoids
with potential impact on its nutraceutical quality. Journal of Cereal Science 49(1): 117-121.
Barnes,
R.J., Dhanoa, M.S. & Lester, S.J. 1989. Standard
normal variate transformation and detrending for near infrared diffuse
reflectance spectra. Applied Spectroscopy 43(5): 772-777.
Barickman, T.C., Simpson,
C.R. & Sams, C.E. 2019. Waterlogging causes early
modification in the physiological performance, carotenoids, chlorophylls,
proline, and soluble sugars of cucumber plants. Plants 8(6): 160-175.
Becker,
R., Wheeler, E.L., Lorenz, K., Stafford, A.E., Grosjean, O.K., Betschart, A. & Saunders, R.M. 1981. A composition
study of amaranth grain. Journal of Food
Science 46(4): 1175-1180.
Brenner, D.M., Baltensperger, D.D., Kulakow, P.A., Lehmann, J.W., Myers, R.L., Slabbert, M.M. & Sleugh, B.B.
2010. Genetic resources and breeding of Amaranthus. In Plant
Breeding Reviews, Vol. 19, edited by Janick, J.
New York: John Wiley & Sons, Inc. pp. 227-285.
Cai, Y.Z. & Cork, H. 2001. Effect of postharvest
treatments on Amaranthus betacyanin degradation evaluated by
visible/near-infrared spectroscopy. Journal
of Food Science: Food Chemistry and Toxicology 66(8): 1112-1118.
Conzen, J.P. 2006. Multivariate Calibration. A Practical Guide
for Developing Methods in the Quantitative Analytical Chemistry. 2nd
English ed. Ettlingen, Germany: Bruker Optics. p.
127.
Delauney, A.J., Hu,
C.A.A., Kishor, P.B.K. & Verma, D.P.S. 1993. Cloning of ornithine deltaaminotransferase cdna from vigna-aconitifolia by transcomplementation in Escherichia-coli and regulation of
proline biosynthesis. Journal of
Biological Chemistry 268(25): 18673-18678.
Ejieji, C.J. &
Adeniran, K.A. 2010. Effects of water and fertilizer stress on the yield, fresh
and dry matter production of grain Amaranth (Amaranthus cruentus). Australian Journal of Agricultural
Engineering 1(1): 18-24.
Font,
R., del Río-Celestino, M., Luna, D., Gil, J. & de Haro-Bailón,
A. 2021. Rapid and cost-effective assessment of the neutral and acid detergent
fiber fractions of chickpea (Cicer arietinum L.) by combining modified PLS and visible with near-infrared spectroscopy. Agronomy 11(4): 666-678.
Font,
R., Del Rı́o Vélez, D.,
Montoro, R. & De Daro, A. 2004. Use of near-infrared spectroscopy for determining
the total arsenic content in prostrate amaranth. Science of The Total Environment 327(1-3): 93-104.
Garcia,
A.A., Damian Huato, M.A., Huerta Lara, M., Saenzde-Cabezon, F.J., Perez-Moreno, I., Marco-Mancebon, V. & Lopez-Olguın,
J.F. 2011. Insect occurrence and losses due to phytophagous species in the
amaranth Amaranthus hypocondriacus L. crop in Puebla, Mexico. African Journal of Agricultural Research6(27):
5924-5929.
Gregorova, Z., Kovacik, J., Klejdus, B., Maglovski, M., Kuna, R., Hauptvogel,
P. & Matusikova, I. 2015. Drought-induced
responses of physiology, metabolites and PR proteins in Triticum aestivum. Journal of Agricultural and Food Chemistry 63(37): 8125-8133.
Guo,
Y., Ni, Y.N. & Kokot, S. 2016. Evaluation of
chemical components and properties of the jujube fruit using near infrared
spectroscopy and chemometrics. Spectrochimica Acta
Part A: Molecular and Biomolecular Spectroscopy 153: 79-86.
Han,
S.I., Chae, J.H., Bilyeu, K., Shannon, J.G. &
Lee, J.D. 2014. Non-destructive determination of high oleic acid content in
single soybean seeds by near ınfrared reflectance spectroscopy. Journal of the American Oil Chemists Society 91(2): 229-234.
Hasegawa,
P.M., Bressan, R.A., Zhu, J.K. & Bohnert, H.J. 2000. Plant cellular and molecular responses
to high salinity. Annual Review of Plant
Physiology and Plant Molecular Biology 51: 463-499.
Herold,
B., Kawano, S., Sumpf, B., Tillmann, P. & Walsh, K.B. 2009. VIS/NIR spectroscopy. In Optical
Monitoring of Fresh and Processed Agricultural Crops, edited by Zude, M. Boca
Raton: CRC Press. pp. 141-249.
Kamboj, U., Guha, P. & Mishra, S. 2017.
Characterization of chickpea flour by near infrared spectroscopy and
chemometrics. Analytical Letters 50(11): 1754-1766.
Li, X.,
Zhang, L., Zhang, Y., Wang, D., Wang, X., Yu, L., Zhang, W. & Li, P. 2020.
Review of NIR spectroscopy methods for nondestructive quality analysis of
oilseeds and edible oils. Trends in Food
Science & Technology 101: 172-181.
Mailer,
R.J. 2004. Rapid evaluation of olive oil quality by NIR reflectance
spectroscopy. Journal of the American
Chemical Society 81: 823-827.
Maritim, T.K., Kamunya, S.M., Mireji, P., Mwendia, C., Muoki, R.C., Cheruiyot,
E.K. & Wachira, F.N. 2015. Physiological and biochemical response of tea [Camellia sinensis (L.) O. Kuntze] to water-deficit stress. Journal of Horticultural Science &
Biotechnology 90(4): 395-400.
Montesinos-Pereira,
D., Barrameda-Medina, Y., Romero, L., Ruiz, J.M.
& Sanchez-Rodriguez, E. 2014. Genotype differences in the metabolism of
proline and polyamines under moderate drought in tomato plants. Plant Biology 16(6): 1050-1057.
Muscolo, A., Junker, A., Klukas, C., Weigelt-Fischer, K., Riewe, D. & Altmann, T. 2015. Phenotypic and metabolic
responses to drought and salinity of four contrasting lentil accessions. Journal of Experimental Botany 66(18):
5467-5480.
Nasirpour-Tabrizi, P., Azadmard-Damirchi,
S., Hesari, J. & Piravi-Vanak,
Z. 2020. Amaranth seed oil
composition. In Nutritional Value of Amaranth, edited by Waisundara, V.Y. Intechopen. pp. 131-164. DOI:
10.5772/intechopen.91381.
Olaniyi, J.O., Adelasoye, K.A.
& Jegede, C.O. 2008. Influence of nitrogen fertilizer on the growth, yield and quality of
grain amaranth varieties. World
Journal of Agricultural Sciences 4(4): 506-513.
Patil,
A.G., Oak, M.D., Taware, S.P., Tamhankar,
S.A. & Rao, V.S. 2010. Nondestructive estimation of fatty acid composition
in soybean [Glycine max (L.) Merrill] seeds using near-infrared
transmittance spectroscopy. Food
Chemistry 120(4): 1210-1217.
Porep, J.U., Kammerer,
D.R. & Reinhold, C. 2015. On-line application of near infrared (NIR)
spectroscopy in food production. Trends in Food Science
& Technology 46(2A): 211-230.
Qu,
J.H., Liu, D., Cheng, J.H., Sun, D.W., Ma, J., Pu, H.B. & Zeng, X.A. 2015.
Applications of near-infrared spectroscopy in food safety evaluation and
control: A review of recent research advances. Critical Reviews in Food Science and Nutrition 55(13): 1939-1954.
Quampah, A., Huang, Z.R.,
Wu, J.G., Liu, H.Y., Li, J.R., Zhu, S.J. & Shi, C.H. 2012. Estimation of
oil content and fatty acid composition in cottonseed kernel powder using near
infrared reflectance spectroscopy. Journal
of American Oil Chemists’ Society 89: 567-575.
Repo-Carrasco-Valencia,
R., Pe~na, J., Kallio, H. & Salminen,
S. 2009. Dietary fiber and other functional components in two varieties of
crude and extruded kiwicha (Amaranthus caudatus). Journal of Cereal Science 49(2):
219-224.
Reta
Alemayehu, F., Bendevis, M.A. & Jacobsen, S.E.
2015. The potential for utilizing the seed crop amaranth (Amaranthus spp.) in East Africa as an alternative crop to support
food security and climate change mitigation. Journal of Agronomy and Crop Science 201(5): 321-329.
Savary, S., Willocquet, L., Pethybridge, S.J., Esker, P., McRoberts, N. & Nelson,
A. 2019. The global burden of pathogens and pests on major food
crops. Nature Ecology & Evolution 3: 430-439.
Shenk, J.S., Workman, Jr. J.J. & Westerhaus, M.O. 2008. Application of NIR spectroscopy to agricultural products. In Handbook
of Near Infrared Analysis Third Edition, edited by Burns, D.A. & Ciurczak,
E.W. Boca Raton: CRC Press. pp.
348-382.
Siesler, H.W. 2008. Basic
principles of near-infrared spectroscopy. In Handbook of Near-Infrared Analysis, edited by Burns, D.A. & Ciurczak,
E.W. Boca Raton: CRC Press. pp
7-19.
Uddin,
M., Okazaki, E., Fukushima, H., Turza, S., Yumiko, Y.
& Fukuda, Y. 2006. Nondestructive determination of water and protein in
surimi by near-infrared spectroscopy. Food
Chemistry 96(3): 491-495.
Valcarcel-Yamani, B. & Lannes, S. 2012. Applications of quinoa (Chenopodium Quinoa Willd.)
and amaranth (Amaranthus Spp.) and
their influence in the nutritional value of cereal based foods. Food and Public Health 2(6): 265-275.
Williams, P.C. & Norris, K. 2000. Near-Infrared Technology in the Agricultural
and Food Industries. St. Paul: American Association of Cereal Chemists. p.
312.
Wutipraditkul, N., Wongwean, P. & Buaboocha, T.
2015. Alleviation of salt-induced oxidative stress in rice seedlings by proline
and/or glycinebetaine. Biologia Plantarum 59: 547-553.
*Pengarang untuk surat-menyurat; email: celileaylin.oluk@tarimorman.gov.tr
|