Sains Malaysiana 51(1)(2022): 15-26

http://doi.org/10.17576/jsm-2022-5101-02

 

Morphometric Variation among 28 Sub-populations of Barbodes binotatus in Indonesia

(Variasi Morfometri dalam kalangan 28 Sub-Populasi Barbodes binotatus di Indonesia)

 

SEPTIANA SRI ASTUTI1, ANIK MARTINAH HARIATI2, WAHYU ENDRA KUSUMA2 & DEWA GEDE RAKA WIADNYA3*

 

1Faculty of Fisheries and Marine Science, University of Brawijaya, Jl. Veteran 65145, Malang, East Java

Indonesia

 

2Department of Aquaculture, Faculty of Fisheries and Marine Science, University of Brawijaya, Jl. Veteran 65145, Malang, East Java, Indonesia

 

3Ichthyofauna, Faculty of Fisheries and Marine Science, University of Brawijaya, Jl. Veteran 65145, Malang, East Java, Indonesia

 

Diserahkan: 5 Oktober 2020/Diterima: 16 Mei 2021

 

ABSTRACT

Morphological variability-based truss morphometry analysis is often used to identify fish population, morphometric asymmetry, and evolutionary changes of fishes. This study aims to analyze the level of symmetry and asymmetry of Barbodes binotatus from several sampling areas in terms of geographic distribution variability in Indonesia, such as Java, Bali, Nusa Tenggara, Sumatera, Kalimantan and Sulawesi. A total of 845 samples were collected from 28 sampling areas. Digital imaging and landmark points were analyzed using the tpsDig.2 program. The parameters including standard landmarks, truss morphometry and geometric-morphometric analysis were completed using SAGE software in order to identify the symmetry-asymmetry level of fishes from each location. Results showed a highly asymmetry level (P<0.0001) in procrustes ANOVA with three factors analyzed: Individual analysis, side identification, and interactions of individual and side. The asymmetry levels of B. binotatus were varied within areas, which recorded at 65.31% for Java Island, 50.16% for Nusa Tenggara, 67.12% for Bali, 67.12% for Sumatera, 30.15% for Kalimantan, and 30.17% for Sulawesi. The asymmetry level of B. binotatus in four major regions (Java, Nusa Tenggara, Bali, and Sumatra) was significantly higher (P<0.0001), while other areas in Kalimantan and Sulawesi tend to be lower than others (P>0.0001). Further research with a genetic approach is needed to identify genetic populations and prove the existence of genetic factors that affect the level of asymmetry in individual body shape.

 

Keywords: Barbodes binotatus; fluctuating asymmetry; morphometric asymmetry

 

ABSTRAK

Analisis morfometri kekuda berasaskan kebolehubahan morfologi sering digunakan untuk mengenal pasti populasi ikan, asimetri morfometri dan perubahan evolusi ikan. Kajian ini bertujuan untuk menganalisis tahap simetri dan asimetri Barbodes binotatus daripada beberapa kawasan persampelan daripada segi kebolehubahan taburan geografi di Indonesia, seperti Jawa, Bali, Nusa Tenggara, Sumatera, Kalimantan dan Sulawesi. Sebanyak 845 sampel telah dikumpul dari 28 kawasan persampelan. Pengimejan digital dan titik mercu tanda dianalisis menggunakan program tpsDig.2. Parameter termasuk tanda tempat piawai, morfometri kekuda dan analisis geometri-morfometri telah dilengkapkan menggunakan perisian SAGE untuk mengenal pasti tahap simetri-asimetri ikan dari setiap lokasi. Keputusan menunjukkan tahap asimetri tinggi (P<0.0001) dalam procrusts ANOVA dengan tiga faktor dianalisis: analisis individu, pengenalan sisi, dan interaksi individu dan sisi. Tahap asimetri B. binotatus adalah berbeza-beza antara kawasan dengan 65.31% untuk Pulau Jawa, 50.16% untuk Nusa Tenggara, 67.12% untuk Bali, 67.12% untuk Sumatera, 30.15% untuk Kalimantan dan 30.17% untuk Sulawesi. Tahap asimetri B. binotatus di empat wilayah utama (Jawa, Nusa Tenggara, Bali dan Sumatera) adalah lebih tinggi secara signifikan (P<0.0001), manakala kawasan lain di Kalimantan dan Sulawesi cenderung lebih rendah daripada yang lain (P>0.0001). Kajian lanjut dengan pendekatan genetik diperlukan untuk mengenal pasti populasi genetik dan membuktikan kewujudan faktor genetik yang mempengaruhi tahap asimetri dalam bentuk badan individu.

 

Kata kunci: Asimetri morfometrik; asimetri turun naik; Barbodes binotatus

 

RUJUKAN

Almeida, D., Almodovar, A., Nicola, G.G. & Elvira, B. 2008. Fluctuating asymmetry, abnormalities and parasitism as indicators of environmental stress in cultured stocks of goldfish and carp. Aquaculture 279(1-4): 120-125. 

Astuti, S.S., Hariati, A.M., Kusuma, W.E. & Wiadnya, D.G.R. 2020. Morphometric asymmetry of Barbodes binotatus (cyprinidae) collected from three different rivers in Java. IOP Conference Series: Earth and Environmental Science 441: 1-6.

Baumgartner, L. 2005. Fish in Irrigation Supply Offtakes- A Literature Review. 11th ed. Australia: NSW Department of Primary Industries. pp. 1-22.

Bergstrom, C.A. & Reimchen, T.E. 2005. Habitat dependent associations between parasitism and fluctuating asymmetry among endemic stickleback populations. Journal of Evolutionary Biology 18(4): 939-948.

Bergstrom, C.A. & Reimchen, T.E. 2003. Asymmetry in structural defenses: Insights into selective predation in the wild. Evolution 57(9): 2128-2138.

Bergstrom, C.A. & Reimchen, T.E. 2002. Geographical variation in asymmetry in Gasterosteus aculeatus. Biological Journal of the Linnean Society 77(1): 9-22.

Bonada, N. & Williams, D.D. 2002. Exploration of utility of fluctuating asymmetry as an indicator of river condition using larvae of caddisfly Hydropsychemorosa (Trichoptera: Hydropsychidae). Hydrobiologia 481: 147-156.

Cabuga, C.C., Apostado, R.R.Q., Abelada, J.J.Z., Calagui, L.B., Presilda, C.J.R., Angco, M.K.A., Bual, J.L., Lador, J.E.O., Jumawan, J.H., Jumawan, J.C., Havana, H.C., Requieron, E.A. & Torres, M.A.J. 2017. Comparative fluctuating asymmetry of spotted barb (Puntius binotatus) sampled from Rivers of Wawa and Tubay, Mindanao, Philippines. Computational Ecology and Software 7(1): 8-27.

Cadrin, S.X. 2000. Advances in morphometric identification of fishery stocks. Reviews in Fish Biology and Fisheries 10: 91-112.

Daloso, D.M. 2014. The ecological context of bilateral symmetry of organ and organisms. Natural Science 6(4): 184-190.

Dar, S.A., Najar, A.M., Balkhi, M.H., Rather, M.A. & Sharma, R. 2012. Length weight relation- ship and relative condition factor of Schizopyge esocinus (Heckel, 1838) from Jhelum River, Kashmir. International Journal of Aquatic Science 3(1): 29-36.

Dorado, E., Torres, M.A.J. & Demayo, C. 2012. Describing body shapes of the white goby, Glossogobius giuris of Lake Buluan in Mindanao, Philippines using landmark-based geometric morphometric analysis. International Research Journal of Biological Sciences 1(7): 33-37.

Ducos, M.B. & Tabugo, S.R.M. 2015. Fluctuating asymmetry as bioindicator of stress and developmental instability in Gafrarium tumidum (rib bed venus clam) from coastal areas of Iligan Bay, Mindanao, Philippines. Aquaculture, Aquarium, Conservation & Legaslation International Journal of the Bioflux Society 8(3): 292-300.

Farinordin, F.A., Nilam, W.S.W., Husn, S.H., Samat, A. & Nor, S.M. 2017. Scale morphologies of freshwater fishes at Tembat Forest Reserve, Terengganu, Malaysia. Sains Malaysiana 46(9): 1429-1439.

Fessehaye, Y., Komen, H., Rezk, M.A., van Arendonk, J.A.M. & Bovenhuis, H. 2007. Effects of inbreeding on survival, body weight and fluctuating asymmetry (FA) in Nile tilapia, Oreochromis niloticus. Aquaculture 264(1-4): 27-35.

Hata, H., Yasugi, M., Takeuchi, Y., Takashi, S. & Hori, M. 2013. Measuring and evaluating morphological asymmetry in fish: Distinct lateral dimorphism in the jaws of scale-eating cichlids. Ecology and Evolutions 3(14): 4641-4647. 

Hendry, A.P., Bohlin, T., Jonsson, B. & Berg, O. 2003. To sea or not to sea? Anadromy versus non-anadromy in salmonids. In Evolution Illuminated: Salmon and Their Relatives. New York: Oxford University Press. pp. 92-125. 

Hermita, J.M., Gorospe, J.G., Torres, M.A.J., Lumasag, G.J. & Demayo, C.G. 2013. Fluctuating asymmetry in the body shape of the mottled spinefoot fish, Siganus fuscescens (Houttuyn, 1782) collected from different bays in Mindanao Island, Philippines. Science International (Lahore) 25(4): 857-861.

Iguchi, K.I., Watanabe, K. & Nishida, M. 2005. Validity of fluctuating asymmetry as a gauge of genetic stress in ayu stocks. Fisheries Science 71: 308-313.

Iwamoto, K., Chang, C.W., Takemura, A. & Imai, H. 2012. Genetically structured population and demographic history of the goldlined spinefoot Siganus suttatus in the northwestern Pacific. Fisheries Science 78: 249-257.

Jenkins, A., Kullander, F.F. & Tan, H.H. 2015. Barbodes binotatus. The IUCN Red List of Threatened Species.

Johnson, O., Neely, K. & Waples, R. 2004. Lopsided fish of the snake river basin -fluctuating asymmetry as a way of assessing impact of hatchery supplementation in chinook salmon Oncorhynchus tshawytscha. Environmental Biology and Fisheries 69: 379-393.

Jumawan, J.H., Requieron, E.A., Torres, M.A.J., Velasco, J.P.B., Cabuga, C.C., Joseph, C.C.D., Lador, J.E.O., Cruz, H.D.D., Moreno, M.P., Dalugdugan, R.O. & Jumawan, J.C. 2016. Investigating fluctuating asymmetry in the matric characteristics off tilapia Oreochromis niloticus sampled from Cabadbaran River, Cabadbaran City, Agusan del Norte, Philippines. Aquaculture, Aquarium, Conservation & Legislation - International Journal of the Bioflux Society 9(1): 113-121.

Kark, S. 2001. Shifts in bilateral asymmetry within a distribution range: The case of the chucar partridge. Evolution 55(10): 2088-2096.

Kark, S., Lens, L., Dongen, V.S. & Schmidt, E. 2004. Asymmetry patterns across the distribution range. Biological Journal of the Linnean Society 81(3): 313-324.

Kocour, M., Linhart, O. & Vandeputte, M. 2007. Mouth and fin deformities in common carp: Is there a genetic basis? Aquaculture 272: 419-422.  

Kottelat, M. 2013. The fishes of the inland waters of Southeast Asia: A catalogue and core bibliography of the fishes known to occur in freshwaters, mangroves and estuaries. Raffles Bulletin of Zoology 27: 1-663.

Kihslinger, R.L. & Nevitt, G.A. 2006. Early rearing environment impacts cerebellar growth in juvenile salmon. Journal of Experimental Biology 209(3): 504-509.

Langerhans, R.B. & Reznick, D. 2010. Ecology and evolution of swimming performance in fishes: Predicting evolution with biomechanics. Fish Locomotion an Etho-Ecological Perspect 200: 200-248.

Leamy, L.J. & Klingenberg, C.P. 2005. The genetics and evolution of fluctuating asymmetry. Annual Review of Ecology, Evolution, and Systematics 36: 1-21.

Lecera, J.M.I., Pundung, N.A.C., Banisil, M.A., Flamiano, R.S., Torres, M.A., Belonio, C.L. & Requieron, E.A. 2015. Fluctuating asymmetry analysis of trimac Amphilophus trimaculatus as indicator of the current ecological health condition of Lake Sebu, South Cotabato, Philippines. Aquaculture, Aquarium, Conservation & Legislation International Journal of the Bioflux Society Bioflux 8(4): 507-516.

Lim, L.S., Chor, W.K., Tuzan, A.D., Malitam, L., Gondipon, R. & Ransangan, J. 2013. Lengthweight relationships of the pond-cultured spotted barb (Puntius binotatus). International Research Journal of Biological Sciences 2(7): 61-63.

Lutterschmidt, W.I., Martin, S.L. & Schaefer, J.F. 2016. Fluctuating asymmetry in two common freshwater fishes as a biological indicator of urbanization and environmental stress within the Middle Chattahoochee Watershed. Symmetry 8(11): 1-17.

Marquez, E. 2007. Sage: Symmetry and Asymmetry in Geometric Data Version 1.05 (compiled 09/17/08). http://www.personal.umich.edu/~emarquez/morph/. Accessed on 5 May 2020.

Isa, M.M., Rawi, C.S.M., Rosla, R., Shah, S.A.M. & Shah, A.S.R.M. 2010. Length-weight relationships of freshwater fish species in Kerian River Basin and Pedu Lake. Research Journal of Fisheries and Hydrobiology 5(1): 1-8.

Mazzi, D., Largiader, C.R. & Bakker, T.C.M. 2002. Inbreeding and developmental stability in three-spined sticklebacks (Gasterosteus aculeatus L.). Heredity 89: 293-299.

McKinnon, J.S., Mori, S., Blackman, B.K., David, L., Kingsley, D.M., Jamieson, L., Chou, J. & Schluter, D. 2004. Evidence for ecology’s role in speciation. Nature 429: 294-298.

Muallil, R.N., Basiao, Z.U., Abella, T.A. & Garcia, L.M.B. 2014. Fluctuating asymmetry in genetically improved Nile Tilapia, Oreochromis niloticus (Linnaeus), strains in the Philippines. Philippine Science Letters 7(2): 420-427.

Natividad, E.M.C., Dalundong, A.O., Ecot, J., Jumawan, J.H., Torres, M.A.J. & Requieron, E.A. 2015. Fluctuating asymmetry as bioindicator of ecological condition in the body shapes of Glossogobius celebius from Lake Sebu, South Cotabato, Philippines. Aquaculture, Aquarium, Conservation & Legislation International Journal of the Bioflux Society Bioflux 8(3): 323-331.

Pana, B.H.C., Lasutan, L.G.C., Sabid, J.M., Torres, M.A.J. & Requiron, E.A. 2015. Using geometric morphometrics to study the population structure of the silver perch, Leiopotherapon plumbeus, from Lake Sebu, South Cotabato, Philippines. Aquaculture, Aquarium, Conservation & Legislation International Journal of the Bioflux Society 8(3): 352-361.

Poulet, N., Reyjol, Y., Collier, H. & Lek, S. 2005. Does fish scale morphology allow the identification of populations at a local scale? A case study for rostrum dace Leuciscus leuciscus burdigalensis in River Viaur (SW France). Aquatic Sciences 67: 122-127.

Polly, D. 2019. Geometric morphometrics. In The Encyclopedia of Archaeological Sciences, edited by Varela, S.L.L. Chichester, West Sussex: Wiley Blackwell.

Presilda, C.J.R., Angco, M.K.A., Obenza, O.L.P., Membrillos, W., Vera, C.N.M. & Requieron, I.A. 2016. Fluctuating asymmetry employed in analyzing developmental instability of Cheilopogon pinnatibarbatus from Cabadbaran City, Agusan del Norte, Philippines. Aquaculture, Aquarium, Conservation & Legislation International Journal of the Bioflux Society 9(1): 91-99.

Robinson, B.W. & Parsons, K.J. 2002. Changing times, spaces, and faces: Tests and implications of adaptive morphological plasticity in the fishes of northern postglacial lakes. Canadian Journal of Fisheries and Aquatic Sciences 59(11): 1819-1833.

Rohlf, F.J. 2004. Tpsdig: Digitize Landmarks and Outlines, Version 2.0.5. New York: Department of Ecology and Evolution, State University of New York.

Savriama, Y., Gomez, J.M., Perfectti, F. & Klingenberg, C.P. 2012. Geometric morphometrics of corolla shape: Dissecting components of symmetric and asymmetric variation in Erysimum mediohispanicum (Brassicaceae). New Phytologist 196(3): 945-954

Seixas, L.B., Santos, A.F.G.N. & Santos, L.N. 2016. Fluctuating asymmetry: A tool for impact assessment on fish populations in a tropical polluted bay. Ecological Indicators 71: 522-532.

Sotola, V.A., Ruppel, D.S., Bonner, T.H., Nice, C.C. & Martin, N.H. 2019. Asymmetric introgression between fishes in the Red River basin of Texas is associated with variation in water quality. Ecology and Evolution 9(4): 213-226.

Swaddle, J.P. 2003. Fluctuating asymmetry, animal behavior and evolution. Advances in the Study of Behavior 32: 169-205.

Swain, D.P., Hutchings, J.A. & Foote, C.J. 2005. Environmental and genetic influences on stock identification characters. In Stock Identification Methods, edited by Cadrin, S.X., Friedland, K.D. & Waldman, J.R. Massachusetts: Academic Press. pp. 45-85.

Trono, D.J.V., Dacar, I.R., Quinones, L. & Tabugo, Q.S.R. 2015. Fluctuating asymmetry and developmental instability in Protoreaster nodosus (chocolate chip sea star) as a biomarker for environmental stress. Computational Ecology and Software 5(2): 119-129.

Wedekind, C. & Muller, R. 2004. Parental characteristics versus egg survival: Towards an improved genetic management in the supportive breeding of lake whitefish. Annales Zoologici Fennici 41(1):105-115.

Zakeyudin, M.S., Isa, M.M., Rawi, C.S.M. & Shah, A.S.M. 2012. Assessment of suitability of Kerian River tributaries using length-weight relationship and relative condition factor of six freshwater fish species. Journal of Environment and Earth Science 2: 52-60.

 

*Pengarang untuk surat-menyurat; email: dgr_wiadnya@ub.ac.id

 

 

   

sebelumnya