Sains Malaysiana 51(3)(2022): 723-732

http://doi.org/10.17576/jsm-2022-5103-07

 

Oxidation of Lignin-Carbohydrate Complex by Laccase/Co(salen) One-Pot Catalysis

(Pengoksidaan Kompleks Lignin-Karbohidrat oleh Lakase/Co(salen) Pemangkinan Satu Periuk)

 

XUE-FEI ZHOU1,2,*

 

1Key Lab of Aromatic Plant Resources Exploitation and Utilization in Sichuan Higher Education, Yibin University, 644000 Yibin, China

  2Faculty of Chemical Engineering, Kunming University of Science and Technology, 650500 Kunming, China

 

Diserahkan: 20 April 2021/Diterima: 8 Ogos 2021

 

Abstract

Lignin-carbohydrate complex (LCC) is hybrid structures containing covalently linked moieties of lignin and carbohydrates. The nature and amount of LCC affect both industrial processes and practical applications of lignocellulosic biomass. Herein, the LCC was isolated from bamboo by successive solvent extraction and precipitation. The effects and mechanism of LCC oxidation respectively by laccase, Co(salen), and laccase/Co(salen) in the presence of molecular oxygen have been investigated by composition analysis using the standard of National Renewable Energy Laboratory (NREL) and high-performance anion exchange chromatography (HPAEC), GPC, FTIR, and 2D-HSQC NMR. We can conclude that the laccase/Co(salen) one-pot catalysis modified the LCC in such a way that more carbohydrate was removed from the LCC with lower molecular weight of LCC as shown by GPC; the catalytic treatments produced oxidation at lignin side-chains and cleavage of lignin β-O-4', β-β' and β-5' bonds in LCC, and cleavage of benzyl-sugar ether, phenyl glycoside and γ-ester bonds in LCC, as shown by FTIR and 2D-HSQC NMR, especially after the laccase/Co(salen) one-pot treatment. The further insight of LCC degradation was discussed in light of the results obtained in oxidation of the LCC model compound coniferin.

 

Keywords: Co(salen); lignin-carbohydrate complex (LCC); one-pot catalysis, laccase; oxidation

 

Abstrak

Kompleks lignin-karbohidrat (LCC) ialah struktur hibrid yang mengandungi gugusan lignin dan karbohidrat yang dikaitkan secara kovalen. Sifat dan jumlah LCC mempengaruhi kedua-dua proses perindustrian dan aplikasi praktikal biojisim lignoselulosa. Di sini, LCC telah diasingkan daripada buluh melalui pengekstrakan dan pemendakan pelarut berturut-turut. Kesan dan mekanisme pengoksidaan LCC masing-masing oleh lakase, Co(salen) dan lakase/Co(salen) dengan kehadiran molekul oksigen telah dikaji melalui analisis komposisi menggunakan piawaian National Renewable Energy Laboratory (NREL) dan anion berprestasi tinggi. Kromatografi pertukaran (HPAEC), GPC, FTIR dan 2D-HSQC NMR. Kita boleh membuat kesimpulan bahawa pemangkinan satu pot lakase/Co(salen) mengubah suai LCC dengan cara yang lebih banyak karbohidrat dikeluarkan daripada LCC dengan berat molekul LCC yang lebih rendah seperti yang ditunjukkan oleh GPC; rawatan pemangkin menghasilkan pengoksidaan pada rantaian sisi lignin dan pembelahan ikatan lignin β-O-4', β-β' dan β-5' dalam LCC dan pembelahan ikatan benzil-gula eter, fenil glikosida dan γ-ester dalam LCC, seperti yang ditunjukkan oleh FTIR dan 2D-HSQC NMR, terutamanya selepas rawatan satu pot lakase/Co(salen). Kajian lanjut tentang degradasi LCC telah dibincangkan berdasarkan keputusan yang diperoleh dalam pengoksidaan koniferin sebatian model LCC.

 

Kata kunci: Co(salen); kompleks lignin-karbohidrat (LCC); pemangkinan satu periuk, lakase; pengoksidaan

 

RUJUKAN

Abdelaziz, O.Y., Al-Rabiah, A.A., El-Halwagi, M.M. & Hulteberg, C.P. 2020. Conceptual design of a kraft lignin biorefinery for the production of valuable chemicals via oxidative depolymerization. ACS Sustainable Chemistry & Engineering 8(23): 8823-8829.

Ahmad, N., Ahmad, N. & Ahmed, U. 2020. Process design and techno-economic evaluation for the production of platform chemical for hydrocarbon fuels from lignocellulosic biomass using biomass-derived γ-valerolactone. Renewable Energy 161: 750-755.

Azadi, P., Inderwildi, O.R., Farnood, R. & King, D.A. 2013. Liquid fuels, hydrogen and chemicals from lignin: A critical review. Renewable and Sustainable Energy Reviews 21: 506-523.

Calvo-Flores, F.G. & Dobado, J.A. 2010. Lignin as renewable raw material. ChemSusChem 3: 1227-1235.

Carrozza, C.F., Papa, G., Citterio, A., Sebastiano, R., Simmons, B.A. & Singh, S. 2019. One-pot bio-derived ionic liquid conversion followed by hydrogenolysis reaction for biomass valorization: A promising approach affecting the morphology and quality of lignin of switchgrass and poplar. Bioresource Technology 294: 122214. DOI: 10.1016/j.biortech.2019.122214.

Dai, J., Patti, A.F., Styles, G.N., Nanayakkara, S., Spiccia, L., Arena, F., Italiano, C. & Saito, K. 2019. Lignin oxidation by MnO2 under the irradiation of blue light. Green Chemistry 21(8): 2005-2014.

Del Río, J., Prinsen, P., Cadena, E.M., Martinez, A.T., Gutierrez, A. & Rencoret, J. 2016. Lignincarbohydrate complexes from sisal (Agave sisalana) and abaca (Musa textilis): Chemical composition and structural modifications during the isolation process. Planta 243(5): 1143-1158.

Deshpande, R., Giummarella, N., Henriksson, G., Germgård, U., Sundvall, L., Grundberg, H. & Lawoko, M. 2018. The reactivity of lignin carbohydrate complex (LCC) during manufacture of dissolving sulfite pulp from softwood. Industrial Crops and Products 115: 315-322.

Díaz-Urrutia, C., Hurisso, B.B., Gauthier, P.M.P., Sedai, B., Singer, R.D. & Baker, R.T. 2016. Catalytic aerobic oxidation of lignin-derived bio-oils using oxovanadium and copper complex catalysts and ionic liquids. Journal of Molecular Catalysis A: Chemical 423: 414-422.

do Pim, W.D., Mendonca, F.G., Brunet, G., Facey, G.A., Chevallier, F., Bucher, C., Baker, R.T. & Murugesu, M. 2021. Anion-dependent catalytic C-C bond cleavage of a lignin model within a cationic metal-organic framework. ACS Applied Materials & Interfaces 13(1): 688-695.

Du, X., Li, J., Gellerstedt, G., Rencoret, J., Del Río, J.C., Martínez, A.T. & Gutiérrez, A. 2013. Understanding pulp delignification by laccase-mediator systems through isolation and characterization of lignin-carbohydrate complexes. Biomacromolecules 14: 3073-3080.

Fernandes, M.R.C., Huang, X., Abbenhuis, H.C.L. & Hensen, E.J.M. 2019. Lignin oxidation with an organic peroxide and subsequent aromatic ring opening. International Journal of Biological Macromolecules 123: 1044-1051.

Huang, J., Fu, S. & Gan, L. 2019. Structure and characteristics of lignin. In Lignin Chemistry and Applications. Elsevier Inc. pp. 25-50.

Huang, X., Zhang, X., Zhang, D., Yang, S., Feng, X., Li, J., Lin, Z., Cao, J., Pan, R., Chi, Y., Wang, B. & Hu, C. 2014. Binary Pd-Polyoxometalates and isolation of a ternary Pd-V-polyoxomolybdates active species for selective aerobic oxidation of alcohols. Chemistry-A European Journal 20: 2557-2564.

Katahira, R., Elder, T.J. & Beckham, G.T. 2018. A brief introduction to lignin structure. In Lignin Valorization: Emerging Approaches, edited by Beckham, G.T. The Royal Society of Chemistry. pp. 1-20.

Kim, U.B., Jung, D.J., Jeon, H.J., Rathwell, K. & Lee, S-G. 2020. Synergistic dual transition metal catalysis. Chemical Review 120(24): 13382-13433.

Lawoko, M. 2013. Unveiling the structure and ultrastructure of lignin carbohydrate complexes in softwoods. International Journal of Biological Macromolecules 62: 705-713.

Michniewicz, M., Jagiea, A. & Ledakowicz, S. 2007. Application of extended oxidation processes for degradation of lignin compounds in pulp and paper effluents. Przeglad Papierniczy63(8): 483-486.

Nakagawa, Y., Kasumi, T., Ogihara, J., Tamura, M., Arai, T. & Tomishige, K. 2020. Erythritol: Another C4 platform chemical in biomass refinery. ACS Omega 5(6): 2520-2530.

Ng, C.K., Toh, R.W., Lin, T.T., Luo, H-K., Hor, T.S.A. & Wu, J. 2019. Metal-salen molecular cages as efficient and recyclable heterogeneous catalysts for cycloaddition of CO2 with epoxides under ambient conditions. Chemical Science 10(5): 1549-1554.

Penin, L., Gigli, M., Sabuzi, F., Santos, V., Galloni, P., Conte, V., Parajo, J.C., Lange, H. & Crestini, C. 2020. Biomimetic vanadate and molybdate systems for oxidative upgrading of iono- and organosolv hard- and softwood lignins. Processes 8(9): 1161. DOI:10.3390/pr8091161.

Qin, Z., Ma, Y-X., Liu, H-M., Qin, G-Y. & Wang, X-D. 2018. Structural elucidation of lignin-carbohydrate complexes (LCCs) from Chinese quince (Chaenomeles sinensis) fruit. International Journal of Biological Macromolecules 116: 1240-1249.

Rajagopalan, B., Cai, H., Busch, D.H. & Subramaniam, B. 2008. The catalytic efficacy of Co(salen)(AL) in O2 oxidation reactions in CO2-expanded solvent media: Axial ligand dependence and substrate selectivity. Catalysis Letters 123: 46-50.

Rawat, S., Gupta, P., Singh, B., Bhaskar, T., Natte, K. & Narani, A. 2020. Molybdenum-catalyzed oxidative depolymerization of alkali lignin: Selective production of vanillin. Applied Catalysis A: General 598(25). DOI:10.1016/j.apcata.2020.117567.

Ren, X.K. & Fasan, R. 2020. Synergetic catalysis in an artificial enzyme. Nature Catalysis 31: 184-185.

Richard, H.J. 2016. Biomimetic catalysis: Taking on the turnover challenge. Nature Chemistry 8(3): 202-204.

Sette, M., Lange, H. & Crestini, C. 2013. Quantitative HSQC analyses of lignin: A practical comparison. Computational and Structural Biotechnology Journal 6(7): e201303016.

Singh, R., Singh, S., Trimukhe, K.D., Pandare, K.V., Bastawade, K.B., Gokhale, D.V. & Varma, A.J. 2005. Lignin-carbohydrate complexes from sugarcane bagasse: Preparation, purification, and characterization. Carbohydrate Polymers 62(1): 57-66.

Sivagurunathan, P., Raj, T., Mohanta, C.S., Semwal, S., Satlewal, A., Gupta, R.P., Puri, S.K., Ramakumar, S.S.V. & Kumar, R. 2021. 2G waste lignin to fuel and high value-added chemicals: Approaches, challenges and future outlook for sustainable development. Chemosphere 26: 129326. DOI:10.1016/j.chemosphere.2020.129326.

Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. & Crocker, D. 2008. Determination of Structural Carbohydrates and Lignin in Biomass. Technical Report for Laboratory Analytical Procedure (LAP). Golden, CO, USA: NREL.

Steinmetz, V., Villain-Gambier, M., Klem, A., Gambier, F., Dumarcay, S. & Trebouet, D. 2019. Unveiling TMP Process water potential as an industrial sourcing of valuable lignin-carbohydrate complexes toward zero-waste biorefineries. ACS Sustainable Chemistry & Engineering 7(6): 6390-6400.

Steinmetz, V., Villain-Gambier, M., Klem, A., Ziegler, I., Dumarcay, S. & Trebouet, D. 2020. Lignin carbohydrate complexes structure preserved throughout downstream processes for their valorization after recovery from industrial process water. International Journal of Biological Macromolecules 157: 726-733.

Sudarsanam, P., Ruijten, D., Liao, Y., Renders, T., Koelewijn, S-F. & Sels, B.F. 2020. Towards lignin-derived chemicals using atom-efficient catalytic routes. Trends in Chemistry2(10): 898-913.

Suzuki, S., Ishikuro, A., Hamano, Y., Hirose, D., Wada, N. & Takahashi, K. 2020. Understanding and suppression of side reaction during transesterification of phenolic hydroxyl groups of lignin with vinyl ester. Chemistry Letters 49(8): 900-904.

Tarasov, D., Leitch, M. & Fatehi, P. 2018. Lignin-carbohydrate complexes: Properties, applications, analyses, and methods of extraction: A review. Biotechnology for Biofuels 11: 269. DOI: 10.1186/s13068-018-1262-1.

Torres, L.A.Z., Woiciechowski, A.L., Tanobe, V.O.D., Zandona, A., de Freitas, R.A., Noseda, M.D., Szameitat, E.S., Faulds, C., Coutinho, P., Bertrand, E. & Soccol, C.R. 2021. Lignin from oil palm empty fruit bunches: Characterization, biological activities and application in green synthesis of silver nanoparticles. International Journal of Biological Macromolecules 167(15): 1499-1507.

Zhang, B., Fu, G.Q., Niu, Y.S., Peng, F., Yao, C.L. & Sun, R.C. 2016. Variations of lignin-lignin and lignin-carbohydrate linkages from young Neosinocalamus affinisbamboo culms. RSC Advances 6(19): 15478-15484.

Zhu, D., Liang, N., Zhang, R., Ahmad, F., Zhang, W., Yang, B., Wu, J., Geng, A., Gabriel, M. & Sun, J. 2020. Insight into depolymerization mechanism of bacterial laccase for lignin. ACS Sustainable Chemistry & Engineering 8(34): 12920-12933.

 

*Pengarang untuk surat-menyurat; email: lgdx602@sina.com

 

 

   

sebelumnya