Sains Malaysiana 51(6)(2022): 1765-1774

http://doi.org/10.17576/jsm-2022-5106-13

 

Graphene Oxide Immobilized Binuclear Biomimetic Catalyst for Triclosan Degradation in Aqueous Solution

(Pemangkin Biomimetik Binukleus Grafin Oksida Tidak Bergerak kepada Degradasi Triklosan dalam Larutan Akues)

 

XUE-FEI ZHOU1,2,* & SHUN-YANG CHEN1

 

1Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, 361005 Xiamen, China

2Faculty of Chemical Engineering, Kunming University of Science and Technology, 650500 Kunming, China

 

Diserahkan: 21 Jun 2021/Diterima: 1 November 2021

 

Abstract

Biomimetic catalysts, Zn(salen), Zn(Phe-TPP), ZnPSC6 and graphene oxide (GO) immobilized ZnPSC6 (ZnPSC6/GO), were fabricated. These biomimetic catalysts were tested for catalytic decomposition of emerging contaminant triclosan (TCS). Catalysts were characterized using Brunauer-Emmett-Teller (BET), X-ray Diffraction (XRD), Fourier Transform infrared (FTIR), and Raman spectra. The reaction processes were studied using HPLC, and the treated solutions were tested based on total carbon content (TCC) analysis and toxicity analysis. The impacts of catalysts on TCS degradation were investigated through testing removal efficiency, total carbon content (TCC) and ecotoxicity. The results showed that ZnPSC6/GO displayed high activity due to salen-porphyrin binuclear active sites and immobilization into GO compared with Zn(salen), Zn(Phe-TPP), and ZnPSC6. Finally, the reaction conditions of TCS oxidation catalyzed by ZnPSC6/GO has been preliminarily discussed. In these conditions, high removal efficiency was observed (96.7%; [ZnPSC6/GO] = 3.0 ppm, [TCS] = 0.02 mmol/L, [H2O2] = 0.60 mmol/L, T = 70 °C, t = 90 min, pH = 8).

 

Keywords: Biomimetic catalysis; degradation; salen-porphyrin complex; TCS

 

Abstrak

Pemangkin biomimetik, Zn(salen), Zn(Phe-TPP), ZnPSC6 dan grafin oksida (GO) tidak bergerak ZnPSC6 (ZnPSC6/GO) telah dihasilkan. Pemangkin biomimetik ini telah diuji untuk penguraian pemangkin bagi triklosan cemaran memuncul (TCS). Pemangkin tersebut telah dicirikan menggunakan Brunauer-Emmett-Teller (BET), pembelauan Sinar-X (XRD), transformasi Fourier inframerah (FTIR) dan spektrum Raman. Proses tindak balas telah dikaji menggunakan HPLC dan larutan yang telah dirawat diuji berdasarkan analisis jumlah kandungan karbon (TCC) dan analisis ketoksikan. Kesan pemangkin pada degradasi TCS telah dikaji melalui ujian kecekapan penyingkiran, jumlah kandungan karbon (TCC) dan ekoketoksikan. Keputusan menunjukkan bahawa ZnPSC6/GO menunjukkan aktiviti yang tinggi disebabkan oleh tapak aktif binukleus salen-porfirin dan imobilisasi ke dalam GO berbanding dengan Zn(salen), Zn(Phe-TPP) dan ZnPSC6. Akhirnya, keadaan tindak balas pengoksidaan TCS yang dimangkinkan oleh ZnPSC6/GO telah dibincangkan terlebih dahulu. Oleh itu, kecekapan penyingkiran tertinggi telah diperhatikan (96.7%; [ZnPSC6/GO] = 3.0 ppm, [TCS] = 0.02 mmol/L, [H2O2] = 0.60 mmol/L, T = 70 °C, t = 90 min, pH = 8).

 

Kata kunci: Degradasi; pemangkin biomimetik; salen-porfirin kompleks; TCS

 

RUJUKAN

Abouelsayed, A., Anis, B., Hassaballa, S., Khalil, A.S.G., Rashed, U.M., Eid, K.A., Al-Ashkar, E. & El Hotaby, W. 2017. Preparation, characterization, Raman, and Terahertz spectroscopy study on carbon nanotubes, graphene nano-sheets, and onion like carbon materials. Materials Chemistry and Physics 189: 127-135.

Al-Musawi, T.J., Rajiv, P., Mengelizadeh, N., Mohammed, I.A. & Balarak, D. 2021. Development of sonophotocatalytic process for degradation of acid orange 7 dye by using titanium dioxide nanoparticles/graphene oxide nanocomposite as a catalyst. Journal of Environmental Management 292: 112777.

Banfi, S., Caruso, E., Buccafurni, L., Battini, V., Zazzaron, S., Barbieri, P. & Orlandi, V. 2006. Antibacterial activity of tetraaryl-porphyrin photosensitizers: An in vitro study on Gram negative and Gram positive bacteria. Journal of Photochemistry and Photobiology B: Biology 85(1): 28-38.

Beam, R., Cancado, L.G. & Novotny, L. 2015. Raman characterization of defects and dopants in graphene. Journal of Physics-Condensed Matter27(8): 083002.

Cooke, P.R. & Smith, J.R.L. 1994. Alkene epoxidation catalysed by iron(III) and manganese(III) tetraarylporphyrins coordinatively bound to polymer and silica supports. Journal of the Chemical Society-Perkin Transactions 1(14): 1913-1923.

Crincoli, K.R. & Huling, S.G. 2021. Contrasting hydrogen peroxide- and persulfate-driven oxidation systems: Impact of radical scavenging on treatment efficiency and cost. Chemical Engineering Journal 404: 126404.

Das, R.K., Sarkar, M., Rahaman, S.M.W., Doucet, H. & Bera, J.K. 2012. Binuclear copper complexes and their catalytic evaluation. European Journal of Inorganic Chemistry 2012(10): 1680-1687.

Esmelindro, M.C., Oestreicher, E.G., Marquez-Alvarez, H., Dariva, C., Egues, S.M.S., Fernandes, C., Bortoluzzi, A.J., Drago, V. & Antunes, O.A.C. 2005. Catalytic oxidation of cyclohexane by a binuclear Fe(III) complex biomimetic to methane monooxygenase. Journal of Inorganic Biochemistry 99(10): 2054-2061.

Gangemi et al. 2019

Guo, M., Lee, Y.M., Fukuzumi, S. & Nam, W. 2021. Biomimetic metal-oxidant adducts as active oxidants in oxidation reactions. Coordination Chemistry Reviews 435: 213807.

Gur, B., Ayhan, M.E., Turkhan, A., Gur, F. & Kaya, E.D. 2019. A facile immobilization of polyphenol oxidase enzyme on graphene oxide and reduced graphene oxide thin films: An insight into in-vitro activity measurements and characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects 562: 179-185.

Huang, Z.Y., Wu, P.X., Liu, C.H., Chen, M.Q., Yang, S.S., Dang, Z. & Zhu, N.W. 2021. Multiple catalytic reaction sites induced non-radical/radical pathway with graphene layers encapsulated Fe-N-C toward highly efficient peroxymonosulfate (PMS) activation. Chemical Engineering Journal413: 127507.

Huang, S., Sun, L. & Ye, C. 1983. Studies on the porphyrin compounds. Chemical Journal of Chinese Universities 4(3): 381-384.

Kaur, H., Hippargi, G., Pophali, G.R. & Bansiwal, A. 2019. Biomimetic lipophilic activated carbon for enhanced removal of triclosan from water. Journal of Colloid and Interface Science535: 111-121.

Li, J., Fan, Y., Ren, Y., Liao, J., Qi, C. & Jiang, H. 2018. Development of isostructural porphyrinsalen chiral metal-organic frameworks through postsynthetic metalation based on single-crystal to single-crystal transformation. Inorganic Chemistry 57(3): 1203-1212.

Maruyama, K., Kobayashi, F. & Osuka, A. 1991. Synthesis and characterization of directly linked salen–porphyrin system with constrained geometries. Bulletin of the Chemical Society of Japan 64(1): 29-34.

Meininger, D.J., Arman, H.D. & Tonzetich, Z.J. 2017. Synthesis, characterization, and binding affinity of hydrosulfide complexes of synthetic iron(II) porphyrinates. Journal of Inorganic Biochemistry 42: 149-167.

Mohamad, S., Bakhshaei, S., Abdul, M.N.S., Parmin, N.A. & Mahmad, R.S.K. 2021. Free fatty acid from waste palm oil functionalized magnetic nanoparticles immobilized on surface graphene oxide as a new adsorbent for simultaneously detecting hazardous polycyclic aromatic hydrocarbons and phthalate esters in food extracts. Journal of Nanoscience and Nanotechnology 21(11): 5522-5534.

Mulla, S.I., Asefi, B., Bharagava, R.N., Saratale, G.D., Li, J.W., Huang, C.L. & Yu, C.P. 2020. Processes for the removal of triclosan in the environment and engineered systems: A review. Environmental Reviews 28(1): 55-66.

Naidu, R., Espana, V.A.A., Liu, Y. & Jit, J. 2016. Emerging contaminants in the environment: Risk-based analysis for better management. Chemosphere 154: 350-357.

Peng, J., Zhang, Y., Zhang, Y., Chen, M., Zhang, H., Li, J., Liu, H. & Gao, S. 2019. Oxidative removal of triclosan with hydrogen peroxide catalyzed by a schiff base Cu()-complex. Environmental Chemistry 38: 977-984.

Pfaffeneder-Kmen, M., Casas, I.F., Naghilou, A., Trettenhahn, G. & Kautek, W. 2017. A multivariate curve resolution evaluation of an in-situ ATR-FTIR spectroscopy investigation of the electrochemical reduction of graphene oxide. Electrochimica Acta 255: 160-167.

Pintado-Herrera, M.G., González-Mazo, E. & Lara-Martín, P.A. 2014. Determining the distribution of triclosan and methyl triclosan in estaurine settings. Chemosphere 95: 478-485.

Qian, L., Liu, P., Shao, S., Wang, M.J., Zhan, X. & Gao, S.X. 2019. An efficient graphene supported copper salen catalyst for the activation of persulfate to remove chlorophenols in aqueous solution. Chemical Engineering Journal360: 54-63.

Samarghandi, M.R., Dargahi, A., Rahmani, A., Shabanloo, A., Ansari, A. & Nematollahi, D. 2021. Application of a fluidized three-dimensional electrochemical reactor with Ti/SnO2-Sb/beta-PbO2 anode and granular activated carbon particles for degradation and mineralization of 2,4-dichlorophenol: Process optimization and degradation pathway. Chemosphere 279: 130640.

Salamanca, M., López-Serna, R., Palacio, L., Hernández, A., Prádanos, P. & Peña, M. 2021. Study of the rejection of contaminants of emerging concern by a biomimetic aquaporin hollow fiber forward osmosis membrane. Journal of Water Process Engineering 40: 101914.

Savunthari, K.V., Arunagiri, D., Shanmugam, S., Ganesan, S., Arasu, M.V., Al-Dhabi, N.A., Chi, N.T.L. & Ponnusamy, V.K. 2021. Green synthesis of lignin nanorods/g-C3N4 nanocomposite materials for efficient photocatalytic degradation of triclosan in environmental water. Chemosphere272: 129801.

Souchier, M., Casellas, C., Ingrand, V. & Chiron, S. 2016. Insights into reductive dechlorination of triclocarban in river sediments: Field measurements and in vitro mechanism investigations. Chemosphere 144: 425-432.

Stobinski, L., Lesiak, B., Malolepszy, A., Mazurkiewicz, M., Mierzwa, B., Zemek, J., Jiricek, P. & Bieloshapka, I. 2014. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. Journal of Electron Spectroscopy and Related Phenomena195: 145-154.

Szychowski, K.A., Skóra, B. & Wójtowicz, A.K. 2021. Triclosan affects the expression of nitric oxide synthases (NOSs), peroxisome proliferator-activated receptor gamma (PPARγ), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in mouse neocortical neurons in vitro. Toxicology in Vitro 73: 105143.

Thongrom, B., Amornpitoksuk, P., Suwanboon, S. & Baltrusaitis, J. 2014. Photocatalytic degradation of dye by Ag/ZnO prepared by reduction of Tollen’s reagent and the ecotoxicity of degraded products. Korean Journal of Chemical Engineering 31: 587-592.

Vargas, G., Hernandez, I., Hopfl, H., Ochoa, M.E., Castillo, D., Farfan, N., Santillan, R. & Gomez, E. 2004. Preparation and structural characterization of three types of homo- and heterotrinuclear boron complexes: Salen{[B-O-B][O2BOH]}, salen{[B-O-B][O2BPh]}, and  salen{[B-O-B][O2P(O)Ph]}. Inorganic Chemistry 43(26): 8490-8500.

Verma, M., Bhaduri, G.A., Kumar, V.S.P. & Deshpande, P.A. 2021. Biomimetic catalysis of CO2 hydration: A materials perspective. Industrial & Engineering Chemistry Research 60(13): 4777-4793.

Wang, W., Nadagouda, M.N. & Mukhopadhyay, S.M. 2021. Flexible reusable hierarchical hybrid catalyst for rapid and complete degradation of triclosan in water. Science of the Total Environment 766: 144109.

Wang, S.Z. & Wang, J.L. 2018. Degradation of triclosan and its main intermediates during the combined irradiation and biological treatment. Environmental Technology 39(9): 1115-1122.

Wilburn, W.J., Jamal, S., Ismail, F., Brooks, D. & Whalen, M. 2021. Evaluation of triclosan exposures on secretion of pro-inflammatory cytokines from human immune cells. Environmental Toxicology and Pharmacology 83: 103599.

Wu, S.S., Lan, D.H., Tan, N.Y., Wang, R., Au, C.T. & Yi, B. 2021. Manganese Schiff base immobilized on graphene oxide complex and its catalysis for epoxidation of styrene. Journal of the ChemicalSociety of Pakistan 43(1): 57-66.

Yunarti, R.T., Safitri, T.N., Dimonti, L.C.C., Aulia, G., Khalil, M. & Ridwan, M. 2022. Facile synthesis of composite between titania nanoparticles with highly exposed (001) facet and coconut shell-derived graphene oxide for photodegradation of methylene blue. Journal of Physics and Chemistry of Solids 160: 110357.

Zhao, X., Zhang, P., Zhao, Y., Zhang, W., Meng, L., Hou, H., Liu, B., Yang, J. & Hu, J. 2019. The degradation of pollutants catalyzed by metalloporphyrin derivatives. Environmental Chemistry 38(9): 2067-2080.

Zhao, X.J., Ruan, W.J., Zhang, Y.H., Dai, F., Liu, D., Zhu, Z.A. & Fan, S.D. 2006. Molecular recognition of porphyrin-salen compound towards N-heterocyclic-guests. Chinese Journal of Chemistry 24(8): 1031-1036.

Zhao, X.J., Ruan, W.J. & Zhu, Z.A. 2006. Study on synthesis and spectral properties of porphyrin-salen compounds. Chinese Journal of Organic Chemistry 26(8): 1087-1092.

 

Zhou, X.F. 2020. A one-pot catalysis combining laccase with Cu(salen) for selective removal of refractory lignin units during oxygen delignification of bamboo kraft pulp. Scientia Forestalis 127: 39.

Zhou, X.F. & Lu, X. 2016. Co(salen) supported on graphene oxide for oxidation of lignin. Journal of Applied Polymer Science 133(44): 44133.

 

*Pengarang untuk surat-menyurat; email: lgdx602@sina.com

 

   

   

sebelumnya