The Malaysian Journal of Analytical Sciences Vol 10 No 1 (2006): 27 -34

 

 

 

SPECTROSCOPIC STUDY OF ADSORBED CO AT POLYCRYSTALLINE COPPER IN AQUEOUS PHOSPHATE BUFFERED SOLUTION

 

Jumat Salimon

 

School of Chemical Sciences and Food Technology,

Universiti Kebangsaan Malaysia,

43600 Bangi, Selangor DE, Malaysia

 

Abstract

The behavior of adsorbed CO at polycrystalline copper surface was investigated by infrared spectroscopy.   It was found that the linear adsorbed CO, Cu-COL  was a dominant species on copper surface at low CO concentration.   Cu-COL  was electrochemically converted to bridge bonded CO, Cu-COB  at high CO concentration.  Increasing the CO surface coverage, OCO  will increase the formation of adsorbed bridge bonded CO.   N2    purging treatment was used to examine the stability of the adsorbed CO through the evacuation process.  The Cu-COB  remained intact while Cu-COL  was completely removed from the copper surface.   It suggests that Cu-COL    may involve in a weak bonding to a copper surface such as in a physisorbed interaction, while Cu-COB  consists much stronger bonding such as a chemisorbed interaction. The N2   purging treatment also gave an additional proof that Cu-COB   was partly converted to copper(I)- carbonyl, Cu(I)-CO at anodic potential regions.

 

Keywords:  Adsorbed carbon monoxide, polycrystalline copper, FTIR

 

References

1      G. Blyholder, J. Phys. Chem., 1964, 68, 2772

2      J.H.B. Chenier, C.A. Hampson, J.A. Howard and B. Mile, J. Phys. Chem., 1989, 93, 114

3      P. Hollins and J. Pritchard, Vibrationai Spectroscopy of Adsorbates, Series in “Chemical Physics”, 1980, Vol. 15, Chp. 8.

4      P. Hollins and J. Pritchard, Surf. Sci., 1983, 134, 91

5      J. Salimon and M. Kalaji, Maiay. J. of Science, 2001, 20, 71.

6      R. Raval, S.F. Parker, M. E. Pemble, P. Hollins, J. Pritchard and M.A. Chesters, Surf.  Sci., 1988, 203, 353

7      B.N.J. Persson, M. Tushaus and A.M. Bradshaw, J. Chem. Phys., 1990, 92, 5034

8      F. Kitamura, M. Takahashi and M. Ito, J. Phys. Chem., 1988, 92, 3320

9      H. Ogasawara, J. Inukai and M. Ito, Chem. Phys. Let., 1992, 198, 389

10    J.P. Biberian and M.A.Van Hove, Surf.  Sci., 1984, 138, 361

11    C. Ruggiero and P. Hollins, J. Chem. Soc., Faraday Trans., 1996, 92,  4829

12   P. Hollins, K.J. Davies and J. Pritchard, Surf.  Sci., 1984, 138, 75

13   P. Dumas, R.G. Tobin and P.L. Richards, Surf.  Sci., 1987, 173, 79

14   J. Pritchard, T. Catterick and R.K.Gupta, Surf.  Sci., 1975, 53, 123

15   E. Borguet and H-L. Dai, J. Chem. Phys., 1994, 101, 9080

16   J-W. He, W.K. Kuhn, L-W.H. Leung and D.W. Goodman, J. Chem. Phys., 1990, 93, 7463

17   P. Schwerdftfeger and G.A. Bowmaker, J. Chem. Phys., 1994, 100 4487

18   M.A. Blitz, S.A. Mitchell and P.A. Hackett, J. Phys. Chem., 1991, 95 8719

19   R. Fournier, J. Chem. Phys., 1995 102, 5396

20   Jumat Salimon, Ph. D Thesis, 2001, University of Wales.




Previous                    Content                    Next