| Sains Malaysiana 52(6)(2023):
          
        1649-1670 http://doi.org/10.17576/jsm-2023-5206-04
            
           
             
           Persicaria minor F-box Gene PmF-box1 Indirectly Affects Arabidopsis thaliana LOX-HPL Pathway
            for Green Leaf Volatile Production
            
           (Gene F-box Persicaria minor PmF-box1 Secara Tidak Langsung Mempengaruhi Tapak Jalan LOX-HPL  Arabidopsis thaliana untuk Penghasilan Sebatian Meruap Daun Hijau)
            
           
             
           NUR-ATHIRAH ABD-HAMID1, MUHAMMAD NAEEM-UL-HASSAN2,3, ZAMRI ZAINAL1,2& ISMANIZAN
            ISMAIL1,2*
            
           
             
           1Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
            
           2Department
            of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
            43600 UKM Bangi, Selangor, Malaysia
            
           3Department
            of Chemistry, University of Sargodha, Sargodha, Punjab 40100, Pakistan
            
           
             
           Diserahkan: 3 Oktober 2022/Diterima: 6 Jun 2023
            
           
             
           Abstract
            
           Green leaf volatiles (GLVs)
            play an essential role in plant defence, plant-plant interaction and
            plant-insect interaction. The plant releases GLVs and inhibits the growth and
            propagation of plant pathogens. In this study, overexpression of PmF-box1 in wild type A. thaliana showed the downregulation
            of genes involved in the lipoxygenase-hydroperoxide lyase (LOX-HPL) pathway, which contributes to the
            biosynthesis of GLVs. It resulted in
            a marked reduction of hexanal production in the PmF-box1-overexpressing
            plant. The expression pattern of LOX-HPL branch genes in the kelch-repeat modified PmF-box1 (KMF)-overexpressing
            plant showed a pattern much closer to the expression of LOX-HPL branch genes in
            the vector control (VC) plant. It was shown that the functional KMF protein
            sequence was not responsible for the significant reduction of all GLVs
            including hexanal, 1-hexanol, (Z)-3-hexen-1-ol, and
            the carbon 5 (C5) volatile, 1-penten-3-ol, in plants overexpressing KMF.
            Furthermore, this study also showed that the relative proportion of production
            of 1-penten-3-ol to hexanal was higher in the PmF-box1-overexpressing
              plant. Based on the
                current comparative literature search, PmF-box1 does not appear to
                interact directly with the proteins or transcription factors of the LOX-HPL
                pathway. On the other hand, PmF-box1 interacts with SAMS1, which
                subsequently influences the HPL pathway enzyme genes. Thus, this study
                highlights the potential roles of PmF-box1 in the manipulation of GLV
                productions.
                
               
             
           Keywords: F-box proteins; hydroperoxide lyase; Kelch-repeats;
            lipoxygenase; oxylipin
            
           
             
           Abstrak
            
           Sebatian meruap daun hijau (GLV)
            memainkan peranan penting dalam pertahanan tumbuhan, interaksi tumbuhan-tumbuhan
            dan interaksi tumbuhan-serangga. Tumbuhan membebaskan GLV serta merencat
            pertumbuhan dan propagasi patogen tumbuhan. Dalam kajian ini, pengekspresan
            lampau PmF-box1 dalam A. thaliana jenis liar telah menunjukkan
            pengawalaturan menurun gen yang terlibat dalam tapak jalan
            lipoksigenase-hidroperoksid liase (LOX-HPL) yang menyumbang kepada biosintesis
            GLV. Ia mengakibatkan pengurangan penghasilan heksanal yang ketara dalam
            tumbuhan yang mengekspres PmF-box1 secara melampau. Corak pengekspresan gen cabang LOX-HPL dalam tumbuhan
            yang mengekspres PmF-box1 secara melampau dengan ulangan Kelch (KMF)
            yang terubah suai menunjukkan corak pengekspresan yang hampir sama dengan gen
            cabang LOX-HPL di dalam tumbuhan kawalan vektor (VC). Ini menunjukkan bahawa
            jujukan protein KMF yang berfungsi tidak bertanggungjawab terhadap penurunan
            yang signifikan bagi semua GLV termasuk heksanal, 1-heksanol, (Z)-3-hexen-1-ol
            dan karbon 5 (C5) meruap, 1-penten-3-ol, di dalam tumbuhan yang mengekspreskan KMF secara melampau. Tambahan pula,
            kajian ini juga menunjukkan bahawa perkadaran relatif penghasilan 1-penten-3-ol
            kepada heksanal adalah lebih tinggi di dalam tumbuhan yang mengekspres PmF-box1 secara melampau. Berdasarkan carian
            perbandingan kepustakaan semasa, PmF-box1 didapati tidak dapat
            berinteraksi secara langsung dengan protein atau faktor transkripsi bagi tapak
            jalan LOX-HPL. Sebaliknya, PmF-box1 berinteraksi dengan SAMS1, yang
            kemudiannya mempengaruhi gen enzim tapak jalan HPL. Oleh itu, kajian ini
            menunjukkan PmF-box1 berpotensi berperanan dalam memanipulasi
            penghasilan GLV.
            
           
             
           Kata kunci: Hidroperoksid liase; lipoksigenase; oksilipin; protein F-box; ulangan Kelch
            
           
             
           Abstrak  
            
            Abd-Hamid, N.A., Ahmad-Fauzi, M.I., Zainal, Z. &
              Ismail, I. 2020. Diverse and dynamic roles of F-box proteins in plant biology. Planta 251(3): 68.
              
             Bai, C., Sen, P.,
            Hofmann, K., Ma, L., Goebl, M., Harper, J.W. & Elledge, S.J. 1996. SKP1 connects cell cycle regulators to
            the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86: 263-274.
            
           Chen, Y., Xu, Y., Luo,
            W., Li, W., Chen, N., Zhang, D. & Chong, K. 2013. The F-box protein OsFBK12
            targets OsSAMS1 for degradation and affects pleiotropic phenotypes, including
            leaf senescence, in rice. Plant
              Physiology 163(4): 1673-1685.
            
           Christapher, P.V.,
            Parasuraman, S., Christina, J.M., Asmawi, M.Z. & Vikneswaran, M. 2015.
            Review on Polygonum minus Huds., a
            commonly used food additive in Southeast Asia. Pharmacognosy Research 7(1): 1-6.
            
           Clough, S.J. & Bent,
            A.F. 1998. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant
              Journal 16(6): 735-743.
            
           Engelberth, J., Alborn,
            H.T., Schmelz, E.A. & Tumlinson, J.H. 2004. Airborne signals prime plants
            against insect herbivore attack. Proceedings
              of the National Academy of Sciences 101(6): 1781-1785.
            
           Engelberth, J.,
            Contreras, C.F., Dalvi, C., Li, T. & Engelberth, M. 2013. Early
            transcriptome analyses of Z-3-hexenol-treated Zea mays revealed distinct transcriptional networks and
            anti-herbivore defense potential of green leaf volatiles. PLoS ONE 8(10): e77465.
            
           Feng, Z., Mao, Y., Xu,
            N., Zhang, B., Wei, P., Yang, D.L., Wang, Z., Zhang, Z., Zheng, R., Yang, L.,
            Zeng, L., Liu, X. & Zhu, J.K. 2014. Multigeneration analysis reveals the
            inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications
            in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of
              America 111(12): 4632-4637.
            
           Gershenzon, J. 2007.
            Plant volatiles carry both public and private messages. Proceedings of the National Academy of Sciences of the United States of
              America 104(13): 5257-5258.
            
           Ghassemian, M., Nambara,
            E., Cutler, S., Kawaide, H., Kamiya, Y. & Mccourt, P. 2000. Regulation of
            abscisic acid signaling by the ethylene response pathway in arabidopsis. The Plant Cell 12(7): 1117-1126.
            
           Gor, M.C., Ismail, I.,
            Mustapha, W.a.W., Zainal, Z., Noor, N.M., Othman, R. & Hussein, Z.a.M.
            2010. Identification of cDNAs for jasmonic acid-responsive genes in Polygonum minus roots by suppression
            subtractive hybridization. Acta
              Physiologiae Plantarum 33(2): 283-294.
            
           Gorman, Z., Tolley,
            J.P., Koiwa, H. & Kolomiets, M.V. 2021. The synthesis of pentyl leaf
            volatiles and their role in resistance to anthracnose leaf blight. Frontiers in Plant Science 12: 719587.
            
           He, Y., Borrego, E.J.,
            Gorman, Z., Huang, P.C. & Kolomiets, M.V. 2020. Relative contribution of
            LOX10, green leaf volatiles and JA to wound-induced local and systemic oxylipin
            and hormone signature in Zea mays (maize). Phytochemistry 174: 112334.
            
           Li, Y., Liu, Z., Wang,
            J., Li, X. & Yang, Y. 2015. The Arabidopsis Kelch repeat F-box E3 ligase
            ARKP1 plays a positive role for the regulation of abscisic acid signaling. Plant Molecular Biology Reporter 34(3):
            582-591.
            
           Li, Y., Qi, H., Jin, Y.,
            Tian, X., Sui, L. & Qiu, Y. 2016. Role of ethylene in the biosynthetic
            pathway of related-aroma volatiles derived from fatty acids in oriental sweet
            melon. Journal of the American Society for
              Horticultural Science 141(4): 327-338.
            
           Malherbe, Y., Kamping,
            A., Delden, W.V. & Zande, L.V.D. 2005. ADH enzyme activity and Adh gene expression in Drosophila melanogaster lines
            differentially selected for increased alcohol tolerance. Journal of Evolutionary Biology 18(4): 811-819.
            
           Mochizuki, S., Sugimoto,
            K., Koeduka, T. & Matsui, K. 2016. Arabidopsis lipoxygenase 2 is essential
            for formation of green leaf volatiles and five-carbon volatiles. FEBS Letters 590(7): 1017-1027.
            
           Naeem-Ul-Hassan, M.,
            Zainal, Z. & Ismail, I. 2015. Green leaf volatiles: biosynthesis,
            biological functions and their applications in biotechnology. Plant Biotechnology Journal 13(6):
            727-739.
            
           Naeem-Ul-Hassan, M.,
            Zainal, Z., Abd Hamid, N.A., Sajad, M. & Ismail, I. 2018. Arabidopsis AT2G02870 loss of function mutants lead
            to enhanced production of hydroperoxide lyase pathway genes and products. Sains Malaysiana 47(12): 3003-3008.
            
           Naeem-Ul-Hassan, M.,
            Zainal, Z., Kiat, C.J., Monfared, H.H. & Ismail, I. 2017. Arabidopsis thaliana SKP1 interacting
            protein 11 (At2g02870) negatively regulates the release of green leaf
            volatiles. RSC Advances 7(88):
            55725-55733.
            
           Othman, M.H.C., Hadi,
            N.A., Zainal, Z., Kiat, C.J., Naeem-Ul-Hassan, M., Zain, C.R.C.M. & Ismail,
            I. 2017. Expression profile of gene encoding Kelch repeat containing F-box
            protein (PmF-box1) in relation to the
            production of green leaf volatiles. Australian
              Journal of Crop Science 11(04): 406-418.
            
           Oughtred, R., Stark, C.,
            Breitkreutz, B.J., Rust, J., Boucher, L., Chang, C., Kolas, N., O'donnell, L.,
            Leung, G., Mcadam, R., Zhang, F., Dolma, S., Willems, A., Coulombe-Huntington,
            J., Chatr-Aryamontri, A., Dolinski, K. & Tyers, M. 2019. The BioGRID interaction
            database: 2019 update. Nucleic Acids
              Research 47(D1): D529-D541.
            
           Risseeuw, E.,
            Daskalchuk, T., Banks, T., Liu, E., Cotelesage, J., Hellmann, H., Estelle, M.,
            Somers, D. & Crosby, W. 2003. Protein interaction analysis of SCF ubiquitin
            E3 ligase subunits from Arabidopsis. The Plant Journal 34(6): 753-767.
            
           Salas, J.J.,
            Garcia-Gonzalez, D.L. & Aparicio, R. 2006. Volatile compound biosynthesis
            by green leaves from an Arabidopsis
              thaliana hydroperoxide lyase knockout mutant. Journal of Agricultural and Food Chemistry 54(21): 8199-8205.
            
           Salas, J.J., Sanchez,
            C., Garcia-Gonzalez, D.L. & Aparicio, R. 2005. Impact of the suppression of
            lipoxygenase and hydroperoxide lyase on the quality of the green odor in green
            leaves. Journal of Agricultural and Food
              Chemistry 53(5): 1648-1655.
            
           Salch, Y.P., Grove,
            M.J., Takamura, H. & Gardner, H.W. 1995. Characterization of a
            C-5,13-cleaving enzyme of 13(S)-hydroperoxide of linolenic acid by soybean
            seed. Plant Physiology 108(3):
            1211-1218.
            
           Sarang, K.,
            Rudziński, K.J. & Szmigielski, R. 2021. Green leaf volatiles in the
            atmosphere - properties, transformation, and significance. Atmosphere 12(12): 1655.
            
           Shen, J., Tieman, D.,
            Jones, J.B., Taylor, M.G., Schmelz, E., Huffaker, A., Bies, D., Chen, K. &
            Klee, H.J. 2014. A 13-lipoxygenase, TomloxC, is essential for synthesis of C5
            flavour volatiles in tomato. Journal of
              Experimental Botany 65(2): 419-428.
            
           Shiojiri, K., Ozawa, R.,
            Matsui, K., Sabelis, M.W. & Takabayashi, J. 2012. Intermittent exposure to
            traces of green leaf volatiles triggers a plant response. Scientific Reports 2: 378.
            
           Vikram, P., Chiruvella,
            K.K., Ripain, I.H. & Arifullah, M. 2014. A recent review on phytochemical
            constituents and medicinal properties of kesum (Polygonum minus Huds.). Asian
              Pacific Journal of Tropical Biomedicine 4(6): 430-435.
            
           Vincenti, S., Mariani,
            M., Alberti, J.-C., Jacopini, S., Brunini-Bronzini De Caraffa, V., Berti, L.
            & Maury, J. 2019. Biocatalytic synthesis of natural green leaf volatiles
            using the lipoxygenase metabolic pathway. Catalysts 9(10): 873.
            
           Wang, K.L., Li, H. &
            Ecker, J.R. 2002. Ethylene biosynthesis and signaling networks. Plant Cell 14: S131-S151.
            
           Wang, Y., Suo, H.,
            Zhuang, C., Ma, H. & Yan, X. 2011. Overexpression of the soybean GmWNK1 altered the sensitivity to salt
            and osmotic stress in Arabidopsis. Journal of Plant Physiology 168(18):
            2260-2267.
            
           Xie, Y.H., Gao, H.Y.,
            Luo, Y.B., Zhang, H.X., Chen, X.N. & Zhu, B.Z. 2011. Role of ethylene in
            the biosynthesis of fatty acid-derived volatiles in tomato fruits. Advanced Materials Research 343-344:
            937-950.
            
           Yang, S.F. &
            Hoffman, N.E. 1984. Ethylene biosynthesis and its regulation in higher plants. Annual Review of Plant Physiology 35:
            155-189.
            
           Yang, X., Song, J., Du,
            L., Forney, C., Campbell-Palmer, L., Fillmore, S., Wismer, P. & Zhang, Z.
            2016. Ethylene and 1-MCP regulate major volatile biosynthetic pathways in apple
            fruit. Food Chemistry 194: 325-336.
            
           Zhang, X., Gou, M. &
            Liu, C.J. 2013. Arabidopsis Kelch repeat F-box proteins regulate
            phenylpropanoid biosynthesis via controlling the turnover of phenylalanine
            ammonia-lyase. The Plant Cell 25(12):
            4994-5010.
            
           
             
           *Pengarang untuk surat-menyurat; email:
            maniz@ukm.edu.my
              
                 
          
          
           
         
            
          
           
          
           
           |