| Sains Malaysiana 52(6)(2023):
          
        1699-1710 http://doi.org/10.17576/jsm-2023-5206-07
            
           
             
           Properties of Spray-Dried Iron Microcapsule
            Using Hydrolysed Glucomannan as Encapsulant: Effect of Feed Viscosity
              
             (Sifat Mikrokapsul Besi Sembur-Kering Menggunakan Glukomanan Terhidrolisis sebagai Enkapsulan: Kesan
            Kelikatan Suapan)
              
             
             
           DYAH HESTI WARDHANI*, IRSYADIA NINDYA WARDANA, HANA NIKMA ULYA, ANDRI CAHYO KUMORO & NITA ARYANTI
            
           
             
           Department
            of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro
            
           Jl.
            Prof. Sudarto, SH, Tembalang, Semarang 50239, Indonesia
            
           
             
           Diserahkan: 25 Oktober
            2022/Diterima: 22 Mei 2023
            
           
             
           Abstract
            
           As one of
            the polysaccharides with high viscocity, even in low concentration, glucomannan
            could block the nozzle and hinder its application as spray-dried
            encapsulant. The present research aimed to investigate the effect of viscosity
            of hydrolysed glucomannan as a spray-dryer feed on properties of encapsulated
            iron particles. Glucomannan was hydrolysed using cellulase to obtain various
            viscosities (83-222 cP) and used for encapsulating iron. Enzymatic hydrolysis
            reduced the glucomannan's glass transition temperature and transmittance values
            of O-H, C-O, and C-H groups. Increasing the viscosity lightened the particle
            colour, and improved encapsulation efficiency and mean particle diameter,
            however, reduced moisture content and bulk density. The highest encapsulation
            efficiency (99.95%) was obtained using the most viscous encapsulant (222 cP). Thicker encapsulants produced larger particles
              with more wrinkles on the surface but performed better in protecting iron. Solubility and swelling of the particles were higher in neutral solution
              (pH=6.8) than in an acidic one. The degree of iron degradation was around 70%
              after 10 months of storage. These results suggested the use of an appropriate
              viscosity of hydrolysed glucomannan not only allow it to be sprayed but also
              showed a potency to protect the iron from solubility in acid ambient and degradation
              during the storage.
              
             
             
           Keywords: Biodegradable;
            glucomannan; iron; microencapsulation; viscosity
              
             
             
           Abstrak
            
           Sebagai salah satu polisakarida dengan kelikatan yang tinggi,
            walaupun dalam kepekatan rendah,  glukomanan boleh menyekat muncung
            dan menghalang penggunaannya sebagai enkapsulan semburan kering. Penyelidikan
            ini bertujuan untuk mengkaji kesan
              kelikatan glukomanan terhidrolisis sebagai suapan pengering semburan ke atas
              sifat zarah besi terkapsul. Glukomanan telah dihidrolisis menggunakan selulase
              untuk mendapatkan pelbagai kelikatan (83-222 cP) dan digunakan untuk membungkus
              besi. Hidrolisis enzim mengurangkan suhu peralihan kaca glukomanan dan nilai
              penghantaran dalam kumpulan O-H, C-O, dan C-H. Meningkatkan kelikatan
              mencerahkan warna zarah dan meningkatkan kecekapan enkapsulasi dan diameter
              zarah purata bagaimanapun, mengurangkan kandungan lembapan dan ketumpatan
              pukal. Kecekapan enkapsulasi tertinggi (99.95%) diperoleh menggunakan
              enkapsulan paling likat (222 cP). Enkapsulan yang lebih tebal menghasilkan
              zarah yang lebih besar dengan lebih banyak kedutan pada permukaan tetapi
              berfungsi dengan lebih baik dalam melindungi besi. Keterlarutan dan
              pembengkakan zarah adalah lebih tinggi dalam larutan neutral (pH=6.8) daripada
              dalam larutan berasid. Tahap degradasi besi adalah sekitar 70% selepas 10 bulan
              penyimpanan. Keputusan ini mencadangkan penggunaan kelikatan glukomanan
              terhidrolisis yang sesuai bukan sahaja membenarkan ia disembur tetapi juga
              menunjukkan potensi untuk melindungi besi daripada keterlarutan dalam ambien
              asid dan degradasi semasa penyimpanan.
              
             
             
           Kata kunci: Besi; glukomannan; kelikatan; mikroenkapsulasi;
            terbiodegradasi
            
           
             
           RUJUKAN
            
           Adamiec,
            J., Borompichaichartkul, C., Srzednicki, G., Panket, W., Piriyapunsakul, S. & Zhao, J. 2012. Microencapsulation of kaffir lime oil and its
              functional properties. Drying Technology 30(9): 914-920. DOI:
                10.1080/07373937.2012.666777
                
               Akpinar,
            O., Erdogan, K., Bakir, U. & Yilmaz, L. 2010. Comparison of acid and enzymatic hydrolysis of tobacco stalk xylan for
              preparation of xylooligosaccharides, LWT - Food Science and Technology 43(1): 119-125. DOI:
                10.1016/j.lwt.2009.06.025
                
               Albrecht,
            S., van Muiswinkel, G.C., Xu, J., Schols, H.A., Voragen, A.G. & Gruppen,
              H. 2011. Enzymatic production and characterization of konjac glucomannan
              oligosaccharides. Journal of Agricultural and Food Chemistry 59(23): 12658-12666. DOI:
                10.1021/jf203091h
                
               Arpagaus,
            C., John, P., Collenberg, A. & Rütti, D. 2017. Nanocapsules formation by
            nano spray drying. In Nanoencapsulation Technologies for the Food and
              Nutraceutical Industries, edited by Jafari, S.M. Massachusetts: Academic
            Press. pp. 346-401.
            
           Baik,
            M.Y., Kim, K.J., Cheon, K.C., Ha, Y.C. & Kim, W.S. 1997.
              Recrystallization kinetics and glass transition of rice starch gel system. Journal
                of Agricultural and Food Chemistry 45(11): 4242-4248.
                  DOI: 10.1021/jf960713u
                  
                 Bhandari,
            B.R. & Howes, T. 1999. Implication
              of glass transition for the drying and stability of dried foods. Journal of
                Food Engineering 40(1-2): 71-79. DOI:
                  10.1016/S0260-8774(99)00039-4
                  
                 Churio,
            O. & Valenzuela, C. 2018. Development and
              characterization of maltodextrin microparticles to encapsulate heme and
              non-heme iron. LWT - Food Science and Technology 96: 568-575.
                DOI: 10.1016/j.lwt.2018.05.072
                
               Ding,
            H., Li, B., Boiarkina, I., Wilson, D.I., Yu, W. & Young, B.R. 2020. Effects of morphology on the bulk density of instant whole
              milk powder. Foods 9(8): 1024. DOI:
                10.3390/foods9081024
                
               Dueik,
            V. & Diosady, L.L. 2017. Microencapsulation of iron in a
              reversed enteric coating using spray drying technology for double fortification
              of salt with iodine and iron. Journal of Food Process Engineering 40(2): e12376.
                DOI: 10.1111/jfpe.12376
                
               Ferrari,
            C.C., Germer, S.P.M. & de Aguirre, J.M.
              2012. Effects of spray-drying conditions on the physicochemical properties of
              blackberry powder. Drying Technology 30(2): 154-163.
                DOI: 10.1080/07373937.2011.628429
                
               Frascareli,
            E.C., Silva, V.M., Tonon, R.V. & Hubinger, M.D.
              2012. Effect of process conditions on the microencapsulation of coffee oil by
              spray drying. Food and Bioproducts Processing 90(3): 413-424.
                DOI: 10.1016/j.fbp.2011.12.002
                
               Goula,
            A.M. & Adamopoulos, K.G. 2010. A new technique for spray
              drying orange juice concentrate. Innovative Food Science & Emerging
                Technologies 11(2): 342-351. DOI:
                  10.1016/j.ifset.2009.12.001
                  
                 Guerreiro,
            F., Pontes, J.F., da Costa, A.M.R. & Grenha, A. 2019.
              Spray-drying of konjac glucomannan to produce microparticles for an application
              as antitubercular drug carriers. Powder Technology 342: 246-252.
                DOI: 10.1016/j.powtec.2018.09.068
                
               He,
            Z., Zhang, J. & Huang, D. 2001. A kinetic correlation for konjac
              powder hydrolysis by β-mannanase from Bacillus
                licheniformis. Biotechnology Letters 23(5): 389-393.
                  DOI: 10.1023/A:1005615204340
                  
                 Imtiaz-Ul-Islam,
            M. & Langrish, T.A.G. 2009. Comparing
              the crystallization of sucrose and lactose in spray dryers. Food and
                Bioproducts Processing 87(2): 87-95.
                  DOI: 10.1016/j.fbp.2008.09.003
                  
                 Kha,
            T.C., Nguyen, M.H. & Roach, P.D. 2011. Effects
              of pre-treatments and air drying temperatures on colour and antioxidant
              properties of gac fruit powder. International
                Journal of Food Engineering 7(3). DOI:
                  10.2202/1556-3758.1926
                  
                 Komiya,
            S., Ojima, R., Takigami, M., Takahashi, R. & Takigami,
              S. 2010. Observation of molecular chains of hydrolyzed konjac glucomannan by
              scanning probe microscope. Transactions of the Materials Research
                Society of Japan 35(4): 881-884. DOI:
                  10.14723/tmrsj.35.881
                  
                 Lechanteur,
            A. & Evrard, B. 2020. Influence of composition and
              spray-drying process parameters on carrier-free DPI properties and behaviors in
              the lung: A review. Pharmaceutics 12(1): 55.
                
               Minowa,
            T., Zhen, F. & Ogi, T. 1997. Liquefaction of cellulose in hot
              compressed water using sodium carbonate: Products distribution at different
              reaction temperatures. Journal of Chemical Engineering of Japan 30(1): 186-190.
                DOI: 10.1252/jcej.30.186
                
               Mishra,
            P., Mishra, S. & Mahanta, C.L. 2014. Effect of maltodextrin
              concentration and inlet temperature during spray drying on physicochemical and
              antioxidant properties of amla (Emblica
                officinalis) juice powder. Food and Bioproducts Processing 92(3): 252-258. DOI:
                  10.1016/j.fbp.2013.08.003
                  
                 Pistre,
            V., Ducept, F., Mezdour, S., Sionneau, M. & Cuvelier, G. 2013. October. Impact of the product viscosity on the spraying
              stage in spray drying. In EuroDrying'2013-4. European Drying Conference.
              
             Ramakrishnan,
            Y., Adzahan, N.M., Yusof, Y.A. & Muhammad, K.
              2018. Effect of wall materials on the spray drying efficiency, powder
              properties and stability of bioactive compounds in tamarillo juice
              microencapsulation. Powder Technology 328: 406-414.
                DOI: 10.1016/j.powtec.2017.12.018
                
               Singh,
            A.P, Siddiqui, J. & Diosady, L.L.
              2018. Characterizing the pH-dependent release kinetics of food-grade spray
              drying encapsulated iron microcapsules for food fortification. Food and Bioprocess Technology 11(2): 435-446.
                DOI: 10.1007/s11947-017-2022-0
                
               Sosnik,
            A. & Seremeta, K.P. 2015. Advantages and challenges of the
              spray-drying technology for the production of pure drug particles and
              drug-loaded polymeric carriers. Advances in Colloid
                and Interface Science 223: 40-54.
                  DOI: 10.1016/j.cis.2015.05.003
                  
                 Tonon,
            R.V., Baroni, A.F., Brabet, C., Gibert, O., Pallet, D. & Hubinger, M.D. 2009. Water sorption and glass transition temperature of spray
              dried açai (Euterpe oleracea Mart.)
              juice. Journal of Food Engineering 94(3-4): 215-221.
                DOI: 10.1016/j.jfoodeng.2009.03.009
                
               Tontul,
            I. & Topuz, A. 2017. Spray-drying of fruit and vegetable juices: Effect of
            drying conditions on the product yield and physical properties. Trends
              in Food Science & Technology 63: 91-102.
                
               Wang,
            J., Liu, C., Shuai, Y., Cui, X. & Nie, L. 2014.
              Controlled release of anticancer drug using graphene oxide as a drug-binding
              effector in konjac glucomannan/sodium alginate hydrogels. Colloids and
                Surfaces B: Biointerfaces 113: 223-229. DOI:
                  10.1016/j.colsurfb.2013.09.009
                  
                 Wardhani,
            D.H.,
              Cahyono, H., Ulya, H.N., Kumoro, A.C., Anam, K. & Vázquez, J.A. 2022. Spray-dryer feed preparation: Enzymatic degradation of
                glucomannan for iron nanoencapsulation. AIMS Agriculture
                  and Food 7(3): 683-703. DOI: 10.3934/agrfood.2022042
                    
                   Wardhani,
            D.H.,
              Rahayu, L.H., Cahyono, H. & Ulya, H.L. 2020a. Purification of
                glucomannan of porang (Amorphophallus oncophyllus) flour using
                  combination of isopropyl alcohol and ultrasound-assisted extraction. Reaktor 20(4): 203-209.
                    DOI: 10.14710/reaktor.20.4.203-209
                    
                   Wardhani,
            D.H., Wardana, I.N., Ulya, H.N., Cahyono, H., Kumoro, A.C. & Aryanti, N. 2020b. The effect of spray-drying inlet conditions on iron
              encapsulation using hydrolysed glucomannan as a matrix. Food and
                Bioproducts Processing 123: 72-79. DOI:
                  10.1016/j.fbp.2020.05.013
                  
                 Wardhani,
            D.H., Aryanti, N., Etnanta, F.N. & Ulya, H.N. 2019.
              Modification of glucomannan of Amorphophallus
                oncophyllus as an excipient for iron encapsulation performed using the
              gelation method. Acta Scientiarum Polonorum Technologia Alimentaria 18(2): 173-184.
                DOI: 10.17306/J.AFS.2019.0651
                
               Yousefi,
            S., Emam-Djomeh, Z. & Mousavi, S.M.
              2011. Effect of carrier type and spray drying on the physicochemical properties
              of powdered and reconstituted pomegranate juice (Punica granatum L.). Journal of Food Science and Technology 48(6): 677-684.
                DOI: 10.1007/s13197-010-0195-x
                
               
             
           *Pengarang untuk
            surat-menyurat; email: dhwardhani@che.undip.ac.id
              
                     
          
          
           
         
            
          
           
          
           
           |