| Sains Malaysiana 52(6)(2023):
          
          
            
          1723-1735 http://doi.org/10.17576/jsm-2023-5206-09
            
           
             
           Evaluation of Calcium Carbonate Precipitation by Bacillus spp. Isolated from Stingless Bee Produtcs
            
           (Penilaian Kerpasan Kalsium Karbonat oleh Bacillus spp. yang Dipencilkan daripada Produk Lebah Kelulut)
            
           
             
           NURUL ASYIQIN ADDENAN1, MOHAMAD SYAZWAN NGALIMAT2,
            RAJA NOOR ZALIHA RAJA ABD RAHMAN1,2, RAKESH DONEPUDI3, NOOR AZLINE MOHD NASIR3, MOHD SALEH JAAFAR3 & SURIANA SABRI1,2*
              
             
             
           1Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
            
           2Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
            
            
              
             3Department of Civil Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
            
            
              
             
            
             Diserahkan: 20 Oktober 2022/Diterima: 12 Jun 2023
            
           
             
           Abstract
            
           Microbiologically
            Induced Calcium Carbonate Precipitation (MICCP) through urea hydrolysis is the
            most effective way to precipitate a high concentration of calcium carbonate
            (CaCO3) within a short time. The MICCP process is used to remediate
            the micro-crack in the concrete. However, limited research has been conducted
            to determine CaCO3 precipitation by bacteria, especially in
            Malaysia. Here, Bacillus spp. isolated from the Malaysian stingless bee
            products were evaluated for CaCO3 precipitation. Bacillus spp. were selected for further
            study according to their ability to produce urease enzymes. The urease-positive Bacillus spp. were screened for CaCO3 precipitation by culturing on both CaCO3 precipitation agar and
            broth media. The survivability of the urease-positive Bacillus spp. in various temperatures, pH values, and NaCl
            concentrations were tested. Seven out of 11 Bacillus spp. were found as ureolytic bacteria. Among the ureolytic bacteria, bacteria
            belonging to the Bacillus subtilis species complex group showed the highest number of bacteria (36.4%) that are
            capable of precipitating CaCO3. Bacillus stratosphericus PD6
            and B. aryabhattai BD8 exhibited the largest CaCO3 precipitation zones (15 mm). Bacillus stratosphericus PD6 also precipitated
              the highest amount of CaCO3 (65 mg) and urease activity (0.197 U/mL). All the urease-positive Bacillus spp.
                were able to grow at 45 °C, pH (8 to 12), and 5% NaCl. Only B.
                  subtilis BD3 can withstand high temperatures up to 55 °C
                    and 15% NaCl concentration. In conclusion, Bacillus spp. isolated from
                      stingless bee products showed the ability as the CaCO3 precipitating bacteria;
                        suggesting its potential application
                          in self-healing
                            concrete.
                              
                             
             
           Keywords: Bacillus spp.; biomineralization; calcium
            carbonate precipitation; urease; ureolytic bacteria
            
           
             
           Abstrak
            
           Pemendakan
            Kalsium Karbonat Terinduksi Mikrobiologi (MICCP) melalui hidrolisis urea adalah
            cara paling berkesan untuk memendakkan kepekatan tinggi kalsium karbonat (CaCO3)
            dalam masa yang singkat. Proses MICCP digunakan untuk memulihkan retakan mikro
            dalam konkrit. Walau bagaimanapun, kajian terhad telah dijalankan untuk
            menentukan pemendakan CaCO3 oleh bakteria, terutamanya di Malaysia.
            Di sini, Bacillus spp. yang
            diasingkan daripada produk lebah Kelulut di Malaysia telah dinilai untuk
            pemendakan CaCO3. Bacillus spp.
            telah dipilih untuk kajian lanjut mengikut kebolehan mereka menghasilkan enzim
            urease. Bacillus spp. yang positif
            urease telah disaring untuk pemendakan CaCO3 dengan mengkultur pada
            media agar dan media kaldu pemendakan CaCO3. Kebolehmandirian Bacillus spp. yang positif urease dalam
            pelbagai suhu, nilai pH dan kepekatan NaCl telah diuji. Tujuh daripada 11 Bacillus spp. ialah bakteria ureolitik.
            Antara bakteria ureolitik, bakteria yang tergolong dalam kumpulan kompleks
            spesies Bacillus subtilis menunjukkan
            bilangan bakteria tertinggi (36.4%) yang mampu memendakan CaCO3. Bacillus stratosphericus PD6 dan B. aryabhattai BD8 didapati menunjukkan
            zon pemendakan CaCO3 terbesar (15 mm). Bacillus stratosphericus PD6 juga memendakan jumlah tertinggi CaCO3 (65 mg) dan aktiviti urease (0.197 U/mL). Semua Bacillus spp. yang positif urease mampu tumbuh pada suhu 45 °C, pH
            (8 hingga 12), dan 5% NaCl. Hanya B.
              subtilis BD3 boleh menahan suhu tinggi sehingga 55 °C dan kepekatan NaCl
            15%. Kesimpulannya, Bacillus spp.
            diasingkan daripada produk lebah Kelulut menunjukkan keupayaan sebagai bakteria
            pemendakan CaCO3; mencadangkan penggunaan potensinya dalam pemulihan
            diri konkrit.
            
           
             
           Kata kunci: Bacillus spp.; bakteria ureolitik;
            biomineralisasi; pemendakan kalsium karbonat; urease
            
           
             
           RUJUKAN
            
           
            
            Aburawi, M.M.
              & Swamy, R.N. 2008. Influence of salt weathering on the properties of
              concrete. The Arabian Journal for Science and Engineering 33(1B): 105-116.
              
             Alazhari,
            M., Sharma, T., Heath, A., Cooper, R. & Paine, K. 2018. Application of
            expanded perlite encapsulated bacteria and growth media for self-healing
            concrete. Construction and Building Materials 160: 610-619.
            
           Algaifi,
            H.A., Bakar, S.A., Sam, A.R.M., Abidin, A.R.Z., Shahir, S. & Altowayti,
            W.A.H. 2018. Numerical modeling for crack self-healing concrete by microbial
            calcium carbonate. Construction and Building Materials 189: 816-824.
            
           Algaifi,
            H.A., Bakar, S.A., Sam, A.R.M., Ismail, M., Abidin, A.R.Z., Shahir, S. &
            Altowayti, W.A.H. 2020. Insight into the role of microbial calcium carbonate
            and the factors involved in self-healing concrete. Construction and Building
              Materials 254: 119258.
            
           Alshalif,
            A.F., Juki, M.I., Othman, N. & Al-gheethi, A.A. 2019. Improvement of
            mechanical properties of bio-concrete using Enterococcus
              faecalis and Bacillus cereus. Environmental Engineering Research 24(4): 630-637.
            
           Amran, M., Onaizi, A.M., Fediuk, R., Vatin, N.I.,
            Muhammad Rashid, R.S., Abdelgader, H. & Ozbakkaloglu, T. 2022. Self-healing
            concrete as a prospective construction material: A review. Materials 15(9):
            3214.
            
           Andalib,
            R., Abd Majid, M.Z., Hussin, M.W., Ponraj, M., Keyvanfar, A., Mirza, J. &
            Lee, H. 2016. Optimum concentration of Bacillus
              megaterium for strengthening structural concrete. Construction and
                Building Materials 118:
            180-193.
            
           Azmi,
            M.S., Lin, T.S., Tajaruddin, H.A., Mohd Zaini Makhtar, M. & Daud, Z. 2018.
            Characterisation of calcium carbonate formed by Bacillus sphaericus via fermentation of urea. International
              Journal of Integrated Engineering: Special Issue 10(9): 119-124.
            
           Bachmeier,
            K.L., Williams, A.E., Warmington, J.R. & Bang, S.S. 2002. Urease activity
            in microbiologically-induced calcite precipitation. Journal of Biotechnology 93(2): 171-181.
            
           Behnood,
            A., Tittelboom, K.V. & Belie, N.D. 2016. Methods for measuring pH in
            concrete: a review. Construction and Building Materials 105: 176-188.
            
           Binici,
            H., Aksogan, O., Gorur, E.B., Kaplan, H. & Bodur, M.N. 2008. Performance of
            ground blast furnace slag and ground basaltic pumice concrete against seawater
            attack. Construction and Building Materials 22: 1515-1526.
            
           Braissant,
            O., Decho, A.W., Dupraz, C., Glunk, C., Przekop, K.M. & Visscher, P.T.
            2007. Exopolymeric substances of sulfate-reducing bacteria: Interactions with
            calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 5(4): 401-411.
            
           Chahal,
            N., Rajor, A. & Siddique, R. 2011. Calcium carbonate precipitation by
            different bacterial strains. African Journal of Biotechnology 10(42): 8359-8372.
            
           Chen,
            H., Peng, C., Tang, C. & Chen, Y. 2019. Self-healing concrete by biological
            substrate. Materials 12:
            4099.
            
           Damayanti,
            N.W., Sahlan, M., Lischer, K., Hermansyah, H., Kusumoputro, B. & Pratami,
            D.K. 2019. Comparison of original honey (Apis sp. and Tetragonula sp.) and fake
            honey compounds in Indonesia using gas chromatography-mass spectrometry
            (GC-MS). AIP Conference Proceedings 2193: 030018.
            
           De
            Muynck, W., De Belie, N. & Verstraete, W. 2010. Microbial carbonate
            precipitation in construction materials: A review. Ecological Engineering
              Journal 36: 118-136.
            
           Deng,
            W. & Wang, Y. 2018. Investigating the factors affecting the properties of
            coral sand treated with microbially induced calcite precipitation. Advances
              in Civil Engineering 2018:
            1-7.
            
           Dhami,
            N.K., Reddy, M.S. & Mukherjee, A. 2013. Biomineralization of calcium
            carbonates and their engineered applications: A review. Frontiers in
              Microbiology 4: 314.
            
           Dhami,
            N.K., Reddy, M.S. & Mukherjee, A. 2014. Application of calcifying bacteria
            for remediation of stones and cultural heritages. Frontiers in Microbiology 5: 304.
            
           Dupraz,
            C., Visscher, P.T., Baumgartner, L.K. & Reid, R.P. 2004. Microbe-mineral
            interactions: Early carbonate precipitation in a hypersaline lake (Eleuthera
            Island, Bahamas). Sedimentology 51(4):
            745-765.
            
           Felsenstein,
            J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39(4): 783-791.
            
           Fujita,
            Y., Ferris, F.G., Lawson, R.D., Colwell, F.S. & Smith, R.W. 2000.
            Subscribed content calcium carbonate precipitation by ureolytic subsurface
            bacteria. Geomicrobiology Journal 17(4):
            305-318.
            
           Golovkina, D.A., Zhurishkina, E.V., Ivanova, L.A., Baranchikov, A.E., Sokolov, A.Y., Bobrov, K.S., Masharsky, A.E., Tsvigun, N.V., Kopitsa, G.P. & Kulminskaya, A.A. 2020. Calcifying bacteria flexibility in induction of CaCO3 mineralization. Life 10(12): 317. 
            
           Hammad,
            I.A., Talkhan, F.N. & Zoheir, A.E. 2013. Urease activity and induction of
            calcium carbonate precipitation by Sporosarcina
              pasteurii NCIMB 8841. Journal of Applied Sciences Research 9(3): 1525-1533.
            
           Hammes,
            F., Boon, N., Villiers, J.D., Verstraete, W. & Siciliano, S.D. 2003.
            Strain-specific ureolytic microbial calcium carbonate precipitation. Applied
              and Enviromental Microbiology 69(8):
            4901-4909.
            
           Hammes,
            F. & Verstraete, W. 2002. Key roles of pH and calcium metabolism in
            microbial carbonate precipitation. Review in Enviromental Science and
              Biotechnology 1: 3-7.
            
           Huang, F. & Zhou, S. 2022. A review of lightweight
            self-healing concrete. Materials 15(21): 7572.
            
           Huynh,
            N.N.T., Imamoto, K. & Kiyohara, C. 2019. A study on biomineralization using Bacillus subtilis Natto for
            repeatability of self-healing concrete and strength improvement. Journal of
              Advanced Concrete Technology 17:
            700-714.
            
           Irwan,
            J.M. & Othman, N. 2013. An overview of bioconcrete for structural repair. Applied
              Mechanics and Materials 389:
            36-39.
            
           Jin,
            C., Yu, R. & Shui, Z. 2018. Fungi: A neglected candidate for the
            application of self-healing concrete. Frontiers in Built Environment 4:
            62.
            
           Joshi,
            K.A., Kumthekar, M.B. & Ghodake, V.P. 2016. Bacillus subtilis bacteria impregnation in concrete for enhancement
            in compressive strength. International Research Journal of Engineering and
              Technology 3(5): 1229-1234.
            
           Khaliq,
            W. & Ehsan, M.B. 2019. Crack healing in concrete using various bio
            influenced self-healing techniques. Construction and Building Materials
              Journal 102: 349-357.
            
           Krishnapriya,
            S., Venkatesh Babu, D.L. & Prince Arulraj, G. 2015. Isolation and
            identification of bacteria to improve the strength of concrete. Microbiological
              Research 174: 48-55.
            
           Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing plaforms. Molecular Biology and Evolution 35(6): 1547.
            
           Luhar, S., Luhar, I. & Shaikh, F.U.A. 2022. A
            review on the performance evaluation of autonomous self-healing bacterial
            concrete: Mechanisms, strength, durability, and microstructural
            properties. Journal of Composites Science 6(1): 23.
            
           Manikandan,
            A.T. & Padmavathi, A. 2015. An experimental investigation on improvement of
            concrete serviceability by using bacterial mineral precipitation. International
              Journal of Research and Scientific Innovation 2(3): 46-49.
            
           Mitchell,
            A. & Grant Ferris, F. 2005. The coprecipitation of Sr into calcite
            precipitates induced by bacterial ureolysis in artificial groundwater:
            Temperature and kinetic dependence. Geochimica et Cosmochimica Acta 69(17): 4199-4210.
            
           Mohammadizadeh,
            M., Ajalloeian, R., Nadi, B. & Soltani Nezhad, S. 2019. Investigating the
            shear strength of biologically improved soil using two types of bacteria. Geomicrobiology Journal 36(7): 581-590.
            
           Natarajan,
            K.R. 1995. Kinetic study of the enzyme urease from Dolichos biflorus. Journal of Chemical Education 72(6): 556-557.
            
           Nei,
            M. & Kumar, S. 2000. Molecular Evolution and Phylogenetics. Oxford:
            Oxford University Press.
            
           Ngalimat,
            M.S., Raja Abd. Rahman, R.N.Z., Yusof, M.T., Syahir, A. & Sabri, S. 2019.
            Characterisation of bacteria isolated from the stingless bee, Heterotrigona itama, honey, bee bread
            and propolis. PeerJ 7:
            e7478.
            
           Ni, M.
            & Ratner, B.D. 2008. Differentiation of calcium carbonate polymorphs by
            surface analysis techniques - An XPS and TOF-SIMS study. Surface and
              Interface Analysis: SIA 40(10):
            1356-1361.
            
           Nosouhian,
            F., Mostofinejad, D. & Hasheminejad, H. 2015. Influence of biodeposition
            treatment on concrete durability in a sulphate environment. Biosystems
              Engineering 133: 141-152.
            
           Pachaivannan,
            P., Hariharasudhan, C., Mohanasundram, M. & Bhavani, M.A. 2020.
            Experimental anaylsis of self healing properties of bacterial concrete. Materials
              Today: Proceedings 33: 3148-3154.
            
           Phillips,
            A.J., Gerlach, R., Lauchnor, E., Mitchell, A.C., Cunningham, A.B. &
            Spangler, L. 2013. Engineered applications of ureolytic biomineralization: A
            review. Biofouling 29(6):
            715-733.
            
           Reeburgh,
            W.S. 2007. Oceanic methane biogeochemistry. Chemical Reviews 107(2): 486-513.
            
           Rodriguez-Navarro,
            C., Rodriguez-Gallego, M., Ben Chekroun, K. & Gonzalez-Muñoz, M.T. 2003.
            Conservation of ornamental stone by Myxococcus
              xanthus-induced carbonate biomineralization. Applied and Environmental
                Microbiology 69(4):
            2182-2193.
            
           Saitou,
            N. & Nei, M. 1987. The neighbor-joining method: A new method for
            reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406-425.
            
           Sarkar,
            M., Adak, D., Tamang, A., Chattopadhyay, B. & Mandal, S. 2015.
            Genetically-enriched microbe-facilitated self- healing concrete - A sustainable
            material for a new generation of construction technology. RSC Advances 5: 105363-105371.
            
           Shahid,
            S., Aslam, M.A., Ali, S., Zameer, M. & Faisal, M. 2020. Self-healing of
            cracks in concrete using Bacillus strains encapsulated in sodium alginate beads. Chemistry Select 5: 312-323.
            
           Siddique,
            R., Singh, K., Singh, M., Corinaldesi, V. & Rajor, A. 2016. Properties of
            bacterial rice husk ash concrete. Construction and Building Materials 121: 112-119.
            
           Sierra-beltran,
            M.G., Jonkers, H.M. & Schlangen, E. 2014. Characterization of sustainable
            bio-based mortar for concrete repair. Construction and Building Materials 67: 344-352.
            
           Van
            Paassen, L.A., Daza, C.M., Staal, M., Sorokin, D.Y., Van Der Zon, W. & Van
            Loosdrecht, M.C.M. 2010. Potential soil reinforcement by biological
            denitrification. Ecological Engineering 36(2): 168-175.
            
           Vijay,
            K., Murmu, M. & Deo, S.V. 2017. Bacteria based self healing concrete - A
            review. Construction and Building Materials 152: 1008-1014.
            
           Wang, J.Y., Soens, H., Verstraete, W. & De Belie,
            N. 2014. Self-healing concrete by use of microencapsulated bacterial
            spores. Cement and Concrete Research 56: 139-152.
            
           Wegian,
            F.M. 2010. Effect of seawater for mixing and curing on structural concrete. The
              IES Journal Part A: Civil & Structural Engineering 3(4): 235-243.
            
           Wiktor,
            V. & Jonkers, H.M. 2011. Quantification of crack-healing in novel
            bacteria-based self-healing concrete. Cement and Concrete Composites 33: 763-770.
            
           Williams,
            P.D., Guilyardi, E., Madec, G., Gualdi, S. & Scoccimarro, E. 2010. The role
            of mean ocean salinity in climate. Dynamics of Atmospheres and Oceans 49: 108-123.
            
           Zhang,
            Z., Weng, Y., Ding, Y. & Qian, S. 2019. Use of genetically modified
            bacteria to repair cracks in concrete. Materials 12(23): 3912.
            
           
            
            
               
             *Pengarang untuk
            surat-menyurat; email: suriana@upm.edu.my
            
                   
          
          
           
         
            
          
           
          
           
           |