| Sains Malaysiana 52(6)(2023): 1737-1747
          
         http://doi.org/10.17576/jsm-2023-5206-10
            
           
             
           Kinetic
            Study of Total Phenolic Content from Piper betle Linn. Leaves Extract Using Subcritical Water
              
             (Kajian Kinetik Jumlah Kandungan Fenolik daripada Ekstrak Daun Piper betle Linn. Menggunakan Air Subkritikal)
            
           
             
           NUR LAILATUL RAHMAH1,2,
            SITI MAZLINA MUSTAPA KAMAL1,*, ALIFDALINO
            SULAIMAN1, FARAH SALEENA TAIP1 & SHAMSUL IZHAR SIAJAM3 
              
             
             
           1Department of Process and Food Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
            
           2Department of Agro-industrial Technology, Universitas Brawijaya, 65145 Malang, East Java, Indonesia
            
           3Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, 43400 UPM Serdang,
            Selangor, Malaysia
              
             
             
           Diserahkan: 19 Februari 2023/Diterima: 12 Jun 2023
            
           
             
           Abstract
            
           The
            green plant-based extraction of phenolic compounds is still challenging and
            attractive due to their benefit. The mechanism
              controlling of desorption rate of phenolic compounds, measured as total
              phenolic content (TPC), from Piper betle Linn.
              (PBL) leaves using subcritical water, and a one-site kinetic desorption model
              (first order) was studied. One-site kinetic desorption model has well explained
              the extraction mechanism of phenolic compounds from PBL leaves using
              subcritical water through desorption and diffusion mechanism. This model fits
              with the experimental data and presents a good description of the extraction
              mechanism with R-squared of 0.94. The recovery of TPC from PBL leaves using
              subcritical water was influenced by intraparticle diffusion, temperature, and extraction time. The desorption rate constant in
              the one-site kinetic desorption model increased from 100 to 200 °C (0.3975±0.02
              to 3.3045±0.00 min-1) and then decreased to 250 °C (3.2093±0.00 min-1).
              The highest TPC was recovered quickly for 5 min at 200 °C. In addition, a high
              yield of TPC was also obtained at a slow desorption process for 30 min at a
              lower temperature of 175 °C. The low activation
                energy for the diffusion of phenolic compounds from PBL leaves of this study
                was 8.964 kJ/mol. This result showed that the one-site kinetic
              desorption model of subcritical water extraction has an excellent opportunity
              to be applicable in phenolic compounds recovery from PBL leaves. The one-site
              kinetic desorption rate constant and mathematical kinetic model equation
              achieved in this study might control the quality of phenolic compounds
              extracted from PBL leaves through subcritical water. 
              
             
             
           Keywords: Activation
            energy; betel leaves; desorption rate; kinetic; subcritical water
            
           
             
           Abstrak
            
           Pengekstrakan berasaskan tumbuhan hijau sebatian fenolik masih mencabar dan menarik kerana manfaatnya. Mekanisme yang mengawal kadar desorpsi sebatian fenolik, diukur sebagai jumlah kandungan fenolik (TPC), daripada daun Piper betle Linn.
            (PBL) menggunakan air subkritikal dan model penyahserapan kinetik satu tapak (turutan pertama) telah dikaji. Model penyahserapan kinetik satu tapak telah menjelaskan dengan baik mekanisme pengekstrakan sebatian fenolik daripada daun PBL menggunakan air subkritikal melalui mekanisme penyahserapan dan penyebaran. Model ini sesuai dengan data uji kaji dan menunjukkan deskripsi yang baik tentang mekanisme ekstraksi dengan koefisien determinasi (R2) sebesar 0.94. Pemulihan TPC dalam daun PBL menggunakan air subkritikal dipengaruhi oleh penyebaran antara zarah, suhu dan masa pengekstrakan. Pemalar kadar desorpsi dalam model desorpsi kinetik satu tapak meningkat daripada 100 kepada 200 °C (0.3975±0.02 kepada 3.3045±0.00 min-1) kemudian menurun kepada 250 °C
              (3.2093±0.00 min-1). TPC tertinggi telah pulih dengan cepat selama 5 minit pada 200 °C. Di samping itu, hasil TPC yang tinggi juga diperoleh pada proses desorpsi perlahan selama 30 minit pada suhu yang lebih rendah 175 °C. Tenaga pengaktifan rendah (Ea) untuk penyebaran sebatian fenolik daripada daun PBL kajian ini adalah 8.964 kJ/mol. Hasil ini mendedahkan bahawa model penyahserapan kinetik satu tapak pengekstrakan air subkritikal mempunyai peluang yang sangat baik untuk digunakan dalam pemulihan sebatian fenolik daripada daun PBL. Kadar penyahserapan kinetik satu tapak pemalar dan persamaan model kinetik matematik yang dicapai dalam kajian ini mungkin mengawal kualiti sebatian fenolik yang diekstrak daripada daun PBL melalui air subkritikal.
                
               
             
           Kata kunci:
            Air subkritikal; daun sirih; kadarpenyahserapan; kinetik; tenaga pengaktifan
              
             
             
                                                                                RUJUKAN
            
          
            
            Abrahim, N.N., Kanthimathi, M.S.
              & Abdul-Aziz, A. 2012. Piper betle shows antioxidant activities,
              inhibits MCF-7 cell proliferation and increases activities of catalase and
              superoxide dismutase. BMC Complementary and Alternative Medicine 12:
              220. https://doi.org/10.1186/1472-6882-12-220
              
             Anekpankul,
            T., Goto, M., Sasaki, M., Pavasant, P. & Shotipruk, A. 2007. Extraction of
            anti-cancer damnacanthal from roots of Morinda citrifolia by subcritical
            water. Separation and Purification Technology 55(3): 343-349.
            https://doi.org/10.1016/j.seppur.2007.01.004
            
           Arambewela,
            L., Arawwawala, M. & Rajapaksa, D. 2006. Piper betle: A potential
            natural antioxidant. International Journal of Food Science and Technology 41(Suppl. 1): 10-14. https://doi.org/10.1111/j.1365-2621.2006.01227.x
            
           Arawwawala,
            L.D.M., Hewageegana, H.P., Arambewela, L.S. & Ariyawansa, H. 2011.
            Standardization of spray-dried powder of Piper betle hot water extract. Pharmacognosy
              Magazine 7(26): 157. https://doi.org/10.4103/0973-1296.80678
            
           Asl, A.H.
            & Khajenoori, M. 2013. Subcritical water extraction. In Mass
              Transfer - Advances in Sustainable Energy and Environment Oriented Numerical
              Modeling, edited by Nakajima, H. https://doi.org/10.5772/54993
                
               Bar-Peled,
            M. & O’Neill, M.A. 2011. Plant nucleotide sugar formation, interconversion,
            and salvage by sugar recycling*. Annual Review of Plant Biology 62(1):
            127-155. https://doi.org/10.1146/annurev-arplant-042110-103918
            
           Bodoira,
            R., Rossi, Y., Montenegro, M., Maestri, D. & Velez, A. 2017. Extraction of
            antioxidant polyphenolic compounds from peanut skin using water-ethanol at high
            pressure and temperature conditions. Journal of Supercritical Fluids 128(March): 57-65. https://doi.org/10.1016/j.supflu.2017.05.011
            
           Chemat,
            F. & Strube, J. 2015. Green Extraction of Natural Products Theory and
              Practice. Wiley-VCH Verlag GmbH & Co. KGaA.
            
           Cliffe,
            S., Fawer, M.S., Maier, G., Takata, K. & Ritter, G. 1994. Enzyme assays for
            the phenolic content of natural juices. Journal of Agricultural and Food
              Chemistry 42(8): 1824-1828. https://doi.org/10.1021/jf00044a048
            
           Crank, J.
            1975. The Mathematics of Diffusion. Clarendon Press.
            
           Cussler,
            E.L. 1984. Diffusion: Mass Transfer in Fluid Systems. Boca Raton: CRC
            Press.
            
           Das, I.
            & Arora, A. 2021. Kinetics and mechanistic models of solid-liquid
            extraction of pectin using advance green techniques - A review. Food
              Hydrocolloids 120(June): 106931.
            https://doi.org/10.1016/j.foodhyd.2021.106931
            
           Ding,
            S.Y., Liu, Y.S., Zeng, Y., Himmel, M.E., Baker, J.O. & Bayer, E.A. 2012.
            How does plant cell wall nanoscale architecture correlate with enzymatic
            digestibility? Science 338(6110): 1055-1060.
            https://doi.org/10.1126/science.1227491
            
           Essien,
            S.O., Young, B. & Baroutian, S. 2020. Recent advances in subcritical water
            and supercritical carbon dioxide extraction of bioactive compounds from plant
            materials. Trends in Food Science and Technology 97(January): 156-169. https://doi.org/10.1016/j.tifs.2020.01.014
              
             Gong,
            Y., Zhang, X., He, L., Yan, Q., Yuan, F. & Gao, Y. 2015. Optimization of
            subcritical water extraction parameters of antioxidant polyphenols from sea
            buckthorn (Hippophaë rhamnoides L.) seed residue. Journal of Food
              Science and Technology 52(3): 1534-1542.
            https://doi.org/10.1007/s13197-013-1115-7
            
           Haider,
            M.R., Khair, A., Rahman, M.M. & Alam, M.K. 2013. Indigenous management
            practices of betel-leaf (Piper betle L.) cultivation by the Khasia
            community in Bangladesh. Indian Journal of Traditional Knowledge 12(2):
            231-239.
            
           Islam,
            M.N., Jo, Y.T., Jung, S.K. & Park, J.H. 2013. Thermodynamic and kinetic
            study for subcritical water extraction of PAHs. Journal of Industrial and
              Engineering Chemistry 19(1): 129-136. https://doi.org/10.1016/j.jiec.2012.07.014
            
           Jaiswal,
            S.G., Patel, M., Saxena, D.K. & Naik, S.N. 2014. Antioxidant properties of Piper
              betel (L) leaf extracts from six different geographical domain of India. Journal
                of Bioresource Engineering and Technology 2(2): 12-20.
            
           Jamaludin,
            R., Kim, D.S., Salleh, L.M. & Lim, S.B. 2021. Kinetic study of subcritical
            water extraction of scopoletin, alizarin, and rutin from morinda citrifolia. Foods 10(10): 1-13. https://doi.org/10.3390/foods10102260
              
             Jamwal,
            K., Bhattacharya, S. & Puri, S. 2018. Plant growth regulator mediated
            consequences of secondary metabolites in medicinal plants. Journal of
              Applied Research on Medicinal and Aromatic Plants 9(December 2017): 26-38.
            https://doi.org/10.1016/j.jarmap.2017.12.003
            
           Kanjwani,
            D.G., Marathe, T.P., Chiplunkar, S.V. & Sathaye, S.S. 2008. Evaluation of
            immunomodulatory activity of methanolic extract of Piper betel. Scandinavian
              Journal of Immunology 67: 589-593.
            
           Kim, D.S.
            & Lim, S.B. 2020. Kinetic study of subcritical water extraction of
            flavonoids from citrus unshiu peel. Separation and Purification Technology 250(March): 117259. https://doi.org/10.1016/j.seppur.2020.117259
            
           Kumar, N.
            & Goel, N. 2019. Phenolic acids: Natural versatile molecules with promising
            therapeutic applications. Biotechnology Reports 24: e00370.
            https://doi.org/10.1016/j.btre.2019.e00370
            
           Madhumita,
            M., Guha, P. & Nag, A. 2019. Extraction of betel leaves (Piper betle L.) essential oil and its bio-actives identification: Process optimization,
            GC-MS analysis and anti-microbial activity. Industrial Crops and Products 138(April): 111578. https://doi.org/10.1016/j.indcrop.2019.111578
            
           Mufari,
            J.R., Rodríguez-Ruiz, A.C., Bergesse, A.E., Miranda-Villa, P.P., Nepote, V.
            & Velez, A.R. 2021. Bioactive compounds extraction from malted quinoa using
            water-ethanol mixtures under subcritical conditions. LWT 138: 110574.
            https://doi.org/10.1016/j.lwt.2020.110574
            
           Murugesan,
            S., Ravichandran, D., Lakshmanan, D.K., Ravichandran, G., Arumugam, V., Raju,
            K., Geetha, K. & Thilagar, S. 2020. Evaluation of anti rheumatic activity
            of Piper betle L. (Betelvine) extract using in silico, in vitro and in vivo approaches. Bioorganic Chemistry 103: 104227. https://doi.org/10.1016/j.bioorg.2020.104227
              
             Nastić,
            N., Švarc-Gajić, J., Delerue-Matos, C., Morais, S., Barroso, M.F. &
            Moreira, M.M. 2018. Subcritical water extraction of antioxidants from mountain
            germander (Teucrium montanum L.). Journal of Supercritical Fluids 138(March): 200-206. https://doi.org/10.1016/j.supflu.2018.04.019
            
           Nkurunziza,
            D., Pendleton, P. & Chun, B.S. 2019. Optimization and kinetics modeling of
            okara isoflavones extraction using subcritical water. Food Chemistry 295(May): 613-621. https://doi.org/10.1016/j.foodchem.2019.05.129
            
           Rahmah,
            N.L., Mazlina, S., Kamal, M., Sulaiman, A., Saleena, F. & Siajam, S.I.
            2022. Optimization of phenolic compounds and antioxidant extraction from Piper
              betle linn. leaves using pressurized hot water. Journal of Applied
                Science and Engineering 26(2): 175-184. https://doi.org/10.6180/jase.202302_26(2).0003
                  
                 Raman,
            V., Galal, A.M. & Khan, I.A. 2012. An investigation of the vegetative
            anatomy of  Piper sarmentosum and
            a comparison with the Anatomy of Piper betle. American Journal of
              Plant Sciences 3(08): 1135-1144. https://doi.org/10.4236/ajps.2012.38137
                
               Sugumaran,
            M., Poornima, M., Venkatraman, S. & Lakshmi, M. 2011. Chemical composition
            and antimicrobial activity of sirugamani variety of Piper betle Linn
            leaf oil. Journal of Pharmacy Research 4(10): 3424-3426.
            
           Taukoorah,
            U., Lall, N. & Mahomoodally, F. 2016. Piper betle L. (betel quid)
            shows bacteriostatic, additive, and synergistic antimicrobial action when
            combined with conventional antibiotics. South African Journal of Botany 105: 133-140. https://doi.org/10.1016/j.sajb.2016.01.006
              
             Temple,
            H., Saez-Aguayo, S., Reyes, F.C. & Orellana, A. 2016. The inside and
            outside: Topological issues in plant cell wall biosynthesis and the roles of
            nucleotide sugar transporters. Glycobiology 26(9): 913-925.
            https://doi.org/10.1093/glycob/cww054
            
           Umar,
            R.A., Sanusi, N. ’Adani, Zahary, M.N., Rohin, M.A.K. & Ismail, S. 2018.
            Chemical composition and the potential biological activities of Piper betel - A review. Malaysian Journal of Applied Sciences 3(1): 1-8.
            
           van
            Boekel, M.A.J. 2009. Kinetic Modeling of Reactions in Foods. Boca Raton:
            CRC Press, Taylor & Francis Group, LLC.
            
           Yogeswari,
            S., Bindu, K.H., Kamalraj, S., Ashokkumar, V. & Jayabaskaran, C. 2020.
            Antidiabetic, antithrombin and cytotoxic bioactive compounds in five cultivars
            of Piper betle L. Environmental Technology and Innovation 20:
            101140. https://doi.org/10.1016/j.eti.2020.101140
            
           Zakaria,
            S.M., Kamal, S.M.M., Harun, M.R., Omar, R. & Siajam, S.I. 2017. Subcritical
            water technology for extraction of phenolic compounds from Chlorella sp.
            microalgae and assessment on its antioxidant activity. Molecules 22(7):
            1105. https://doi.org/10.3390/molecules22071105
            
           Zhang,
            B., Gao, Y., Zhang, L. & Zhou, Y. 2021. The plant cell wall: Biosynthesis,
            construction, and functions. Journal of Integrative Plant Biology 63(1):
            251-272. https://doi.org/10.1111/jipb.13055
            
           Zhang,
            J., Wen, C., Zhang, H., Duan, Y. & Ma, H. 2020. Recent advances in the
            extraction of bioactive compounds with subcritical water: A review. Trends
              in Food Science & Technology 95: 183-195. https://doi.org/10.1016/j.tifs.2019.11.018
                
               Zhang,
            L., Gao, C., Mentink-Vigier, F., Tang, L., Zhang, D., Wang, S., Cao, S., Xu,
            Z., Liu, X., Wang, T., Zhou, Y. & Zhang, B. 2019. Arabinosyl deacetylase
            modulates the arabinoxylan acetylation profile and secondary wall formation. The
              Plant Cell 31(5): 1113-1126. https://doi.org/10.1105/tpc.18.00894
            
           
            
            
               
             *Pengarang untuk surat-menyurat; email: smazlina@upm.edu.my
            
           
                   
          
          
           
         
            
          
           
          
           
           |