Sains Malaysiana 37(4): 359-364(2008)

 

Open Circuit Potential Study of Stainless Steel in Environment

Containing Marine Sulphate-Reducing Bacteria

(Kajian Keupayaan Litar Terbuka Terhadap Keluli Tahan Karat dalam

Persekitaran yang Mengandungi Bakteria Penurun-Sulfat Marin)

 

 

Fathul Karim Sahrani

PPSSSA, Fakulti Sains dan Teknologi

Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor D.E. Malaysia

 

Madzlan Abd. Aziz, Zaharah Ibrahim & Adibah Yahya

Jabatan Kimia / Biologi, Fakulti Sains

Universiti Teknologi Malaysia

81310 UTM Skudai, Johor D.T. Malaysia

 

Received:  25 July 2007 / Accepted:  25 January 2008

 

 

ABSTRACT

 

The corrosion potential of AISI 304 stainless steel coupons influenced by sulphate-reducing bacteria (SRB) has been studied. Pure colony of SRB was isolated from the Malaysia Marine and Heavy Engineering, Pasir Gudang, Johor. Open circuit potential measurements were carried out in variable types of culturing solutions with SRB1, SRB2, combination of SRB1 & SRB2 and without SRBs inoculated. Results showed that the corrosion potential, Eoc increased in the presence of SRBs (in pure and mixed culture) compared to that of control. EDS analysis showed the strong peak of sulphur in coupon containing SRB cultures compared to the control. ESEM data showed  that the high density cell of SRBs were associated with corroding sections of surface steel comparing with non-corroding sections for coupons immersed in VMNI medium containing SRBs.

 

Keywords: open circuit potential; stainless steel; sulphate-reducing bacteria

 

 

ABSTRAK

 

Keupayaan kakisan kupon keluli kalis karat bersiri 304 yang dipengaruhi oleh bakteria penurun-sulfat (SRB) telah dikaji. Koloni tulen SRB telah dipencilkan dari Kejuruteraan Berat dan Marin Malaysia, Pasir Gudang Johor. Pengukuran keupayaan litar terbuka telah dijalankan dalam berbagai-bagai-bagai jenis larutan pengkulturan menggunakan SRB1, SRB2, kombinasi SRB1 dan SRB2 serta larutan tanpa kultur SRB. Keputusan menunjukkan keupayaan kakisan, Eoc meningkat dengan kehadiran SRB (dalam kultur tulen dan gabungan kultur) berbanding kawalan. Analisis EDS menunjukkan puncak sulfur yang tinggi dalam kupon yang mengandungi kultur SRB berbanding kawalan. Data dari mikroskop elektron imbasan sekitaran (ESEM) menunjukkan kepadatan sel SRB yang tinggi berasosiasi di bahagian permukaan keluli yang karat berbanding bahagian yang tidak berkarat bagi kupon yang direndam dalam larutan VMNI yang mengandungi SRB.

 

Kata kunci: bakteria penurun-sulfat; Keluli kalis karat; keupayaan litar terbuka 

 

 

 

REFERENCES/RUJUKAN

 

Angell, P. & Urbanic, K. 2000. Sulphate-reducing bacterial activity as a parameter to predict localized Corr. Sci. of stainless alloys. Corrosion Science 42: 897-912.

Angell, P., Luo, J.S. & White, D.C. 1995. Microbially sustained pitting corrosion of 304 stainless steel in anaerobic seawater. Corr. Sci. 37: 1085-1096.

ASTM Designation: G3-89. 1999. Standard practice for conventions applicable to electrochemical measurements in corrosion testing, American Society for Testing and Materials International, West Conshohocken, United States.

Anderko, A. & Shuler, P.A. 1997. Computational approach to predicting the formation of iron sulphide species using stability diagrams. Computers & Geosciences 23(6): 647-658.

Beech, I.B. & Cheung, C.W.S. 1996. The use of biocides to contron sulphate-reducing bacteria in biofioms of mild steel surfaces. Biofouling 9: 231-249.

Beech, I.B., Zinkevich, V., Hanjangsit, L. & Avci, R. 1998. Modification of passive layer of AISI 316 stainless steel in the presence of pseudomonas biofilm. In : Proceedings of the NACE LATIN CORR 98. 3rd. Congers of the NACE Latin American Reagen, National Association of Corrosion Engineers electronic publication.

Cheung, C.W.S., Wals, F.C. Chun, V., Campbell, S.A. & Beech, J.B. 1994. The role of microbial consortia in marine corrosion of carbon steel. Int. Biodet. Biodeg. 34(4): 259-279.

Costerton, J.W., Lewandowski, Z., Caldwell, D.E., Korber, D.R. & Lappin-Scott, R., 1995. Bacterial biofilms in nature and disease. Ann. Rev. Microbiol. 49: 711.

Crum, J.R. & Little, B.J. 1991. Growing interest in MIC. Nuclear Eng. Int. 47: 112-123.

Dexter, S.C., Duquette, D.J., Sierbert, O.W. & Videla, A. 1991. Use and limitations of electrochemical techniques for investigating microbiological corrosion. Corrosion 47: 308-318.

Dexter, S.C. 1995. Microbiological effects. In Corrosion Test and Standards, Application and Interpretation,  R. Baboian (ed).  ASTM Manual Seris, Philadephia, MNL 20.

Dexter, S.C. & Gao, G.Y. 1988. Effect of seawater biofilms on corrosion potential and oxygen reduction of stainless steel. Corrosion -NACE 44(10): 717–723.

Dowling, N.J.E., Franklin, M.J., White, D.C., Lee, C.H. & Lundin, C. 1988. The effect of microbiologically influenced corrosion on stainless steel weldment in seawater. Corrosion 89, NACE Proc. Conf., New Orleans: 187-201.

Dupont , I., Ferron, D. & Novel, G. 1998. Effect of glucose oxidase activity on corrosion potential of stainless steels in seawater. Int. Biodet. Biodeg. 41:13-18.

Fonseca, I.T.E,. JoseFeio, M., Lino, A.K., Reis, M.A. & Rainha, V.L. 1997. The influence of the media on the corrosion of mild steel by Desulfovibrio desulfuricans bacteria : an electrochemical study. Electrochemica Acta 43: 213-222.

Franklin, M.J., Nivens, D.E., Mittelman, M.W., Vass, A.A., Jacj, R.F., Dowling, N.J.E., Mackowski, R.P., Duncan, S.L., Ringleberg, D.B. & White, D.C. 1989. An analogue MIC system with specific bacterial consortia, to test effectiveness of materials selection and counter-measures. Corrosion 89, NACE Proc. Conf., New Orleans: 513-523.

Jack, R.F., Ringelberg, D.B. & White, D.C. 1992. Differential corrosion rates of carbon steel by combinations Bacillus sp., Hafnia alvei, and Desulfovibrio gigas established by phospolipid analysis of electrode biofilm. Corrosion Science 33(12): 1843-1853.

Johnsen, R. & Bardal, E. 1985. Cathodic properties of different stainless steels in natural seawater. Corrosion  41: 296-304.

Keresztes, Z.S., Telegdi, J., Beczner, J. & Kalman, E. 1997. The influenced of biocide on the microbiologically influenced corrosion of mild steel and brass. Electrochimica Acta. 43(2): 77-85.

Little, B.J., Wagner, P. Hart, K., Ray, R., Lavoie, D., Nealson, K. & Aguilar, C. 1997. The role of metal –reducing bacteria in microbiologically influenced corrosion. Paper No. 215, Proc. Nace Corrosion ’97. Houston, TX: National Association of Corrosion Engineers International.

Mansfield, F. & Little, B. 1990. Microbially Influenced Corrosion of anaerobic bacteria. Corrosion 90: 108.

Pedersen, A., Kjelleberg, S. & Hermansson, M. 1988. A screening methods for bacterial corrosion of metals. J. Microbial. Meth. 8: 191-198.

Pope, D.H. & Morris, E.A. 1995. Some experiences with microbiologically influenced corrosion of pipelines. Materials Performance 23:73-82.

Posgate, J.R. 1984. The sulphate reducing bacteria. 2nd ed. England: Cambridge University Press.

Rainha, V.L. & Fonseca, I.T.E. 1997. Kinetic studies on the SRB influenced corrosion of steel: a first approach. Corr. Sci. 39(4): 807-813.

Sarioglu, F., Javaherdashti, R. & Aksoz, N. 1997. Corrosion of a drilling pipe steel in an environment of containing sulphate-reducing bacteria. Int. J. Pres. Ves. & Piping 73: 127-131.

Scotto, V.  1989.  Electrochemical studies of biocorrosion of stainless steel in seawater. Proc. EPRI Workshop, Microbial Corrosion: 1988. Electric Power Research Institute, Palo Alto, CA, pp.1-36.

Scotto, V., Di Cintio, R. & Marcenaro, G. 1985. The influence of marine aerobic microbial film on stainless steel corrosion behavior. Corr. Sci. 25(3): 185-194.

Starosvetsky, D. Khaselev, O. Starosvetsky, J., Armon, R. & Yahalom, J. 2000. Effect of iron exposure in SRB media on piting initiation. Corr. Sci. 42:345-359.

Tuovinen, O.H. & Cragnolino, G. 1986. Proceedings of the Conference on Corrosion Monitoring in Industrial Plants Using Nondestructive Testing and Electrochemical Methods, Montreal, Canada, May 1986 pp.413-432.

Videla, H.A. 1991. Microbially induced corrosion: An updated overview. In: Biodeterioration and Biodegradation, H.W. Rossmoore, (ed.) London: Elsevier Science. 

Videla, H.A. 1995. Electrochemical aspects of biocorrosion. In Bioextraction and Biodeterioration of Metals. Gaylarde, C.C. & Videla, H.A. (eds.) U.K: Cambridge University Press.

Videla, H.A. 1996. Manual of Biocorrosion. Boca Raton: Lewis Publishers.

Werner, S.E., Johnson, C.A., Laycock, N.J., Wilson, P.T. & Webster, B.J. 1998. Pitting of type 304 stainless steel in the presence of a biofilm containing sulphate-reducing bacteria. Corr. Sc.e 40: 465-480.

Zinkevich, V., Bogdarina, I., Kang, H., Hill, M.A.W., Tapper, R.C. & Beech, I.B. 1996. Characterization of exopolimers produced by different isolates of marine sulphate-reducing bacteria.  Int. Biodet. Biodeg. J.  8:163-172.

 

 

previous