Sains Malaysiana 38(3):
305-311(2009)
Geoelectrical Resistivity and Ground Penetrating Radar Techniques
in the Study of Hydrocarbon-Contaminated Soil
(Teknik Keberintangan Geoelektrik
dan Radar Penusukan Tanih dalam
Kajian Tanih Tercemar Hidrokarbon)
Umar Hamzah*& Abdul Rahim Samsudin
Program Geologi, Pusat Pengajian Sains Sekitaran dan
Sumber Alam
Fakulti Sains dan Teknologi, Universiti Kebangsaan
Malaysia
43600 UKM Bangi, Selangor
Mohd Azmi Ismail
Agensi Angkasa Negara (MOSTI), Kementerian Sains Teknologi
Aras 5, Blok 2, Menara PjH, Presint 2
62100 Putrajaya, Malaysia
Received: 7 August 2008 / Accepted: 13 October 2008
ABSTRACT
Geophysical
surveys in particular Ground Penetrating rRdar (GPR), geolectrical Resistivity
Tomography (ERT) and Vertical Resistivity Probe (VRP) were used in mapping the subsurface
geological structures and groundwater contaminants at Sungai Kandis, Klang to
identify the approximate boundaries of contaminant plumes and to provide
stratigraphic information at this site. The study area was formerly an illegal
dumping site of hydrocarbon and toxic waste. A good correlation exists between
GPR signatures, ERT layers, vertical resistivity probe and the contaminated
soil. The presence of contaminant plumes as well as the water table are also
observed in the GPR and ERT sections at depths approximately of 0.5 to 1m. In
this study, a total of 16 GPR traverses and 10 ERT lines with lengths from 30
to 100m were established. VRP measurements were conducted in 14 shallow
boreholes with a maximum depth of about 1m. The VRP results show high apparent
resistivity values ranging from 200 to 10000 Ωm associated with an oil
contaminated layer. The presence of this layer was also detected in the 2D
resistivity sections as a thin band of high resistivity values ranging from 60
to 200 Ωm. In the GPR section, the oil contaminated layer exhibits
discontinuous, subparallel and chaotic high amplitude reflection patterns.
Keywords:
Contamination; groundwater; radar; resistivity; soil
ABSTRAK
Survei geofizik khususnya radar penusukan tanih
(RPT), tomografi keberintangan geoelektrik (TKE) dan prob keberintangan menegak
(PKM) telah digunakan dalam pemetaan struktur geologi subpermukaan dan
pencemaran air tanah di Sungai Kandis,, Klang untuk mengenalpasti sempadan
anggaran plum tercemar dan juga untuk menyediakan maklumat stratigrafi di tapak
kajian ini. Kawasan kajian adalah merupakan bekas tapak pembuangan sisa
hidrokarbon dan toksik secara haram. Satu korelasi yang baik telah diperolehi
mengaitkan maklumat RPT, TKE, PKM dengan tanih yang tercemar. Kehadiran plum
tercemar dan juga aras air tanah dapat dicerap dalam keratan rentas RPT dan TKE
pada kedalaman sekitar 0.5 hingga 1.0m. Pengukuran telah dilakukan pada 16
garis rentasan RPT dan 10 garis rentasan TKE dengan panjang garis rentasan adalah 30m hingga 100m. Pengukuran PKM
telah dijalankan dalam 14 lubang gerudi cetek pada kedalaman maksimum 1m. Hasil
PKM menunjukkan nilai keberintangan ketara yang besar berjulat 200 hingga 1000 Ωm
berasosiasi dengan lapisan tercemar. Lapisan tersebut juga dapat dikesan dalam
keratan rentas keberintangan 2D sebagai satu jalur keberintangan tinggi yang
nipis bernilai 60 hingga 200 Ωm. Dalam keratan rentas RPT, lapisan
tercemar dengan minyak mempunyai ciri-ciri pantulan berpola terputus-putus,
subselari, bercelaru dan beramplitud tinggi.
Kata kunci: Air tanah; keberintangan, pencemaran;
radar; tanih
REFERENCES
Atekwana,
E.A., Sauck, W.A. & Werkema Jr, D.D. 2000. Investigations of geoelectrical signatures
at a hydrocarbon contaminated site. Journal
of Applied Geophysics 44:167-180.
Barker, R.D. 1999. Surface and borehole geophysics. In Water resource of the hard rock aquifer
in Arid and Semi-arid Zone. Edited by Lloyd. Studies and reports in hydrogeology
58, Paris UNESCO.
Benson, A.K. & Mustoe, N.B. 1996. DC resistivity,
GPR and soil-water quality data combined to asses hydrocarbon contamination: A
case study. Environmental Geosciences 3:165-175.
Daniels, J.J., Roberts, R.L. & Vendl, M.A. 1995.
GPR for the detection of liquid contamination. Journal of Applied Geophysics 32: 195-207.
Griffith
, D.H., Turnbull, J. & Olayinka, A.I. 1990. Two-dimensional
resistivity mapping with a computer controlled array. First Break 8:121-129.
Kim
C., Daniels, J.J., Guy, E.D., Radzevicius, S.J. & Holt, J. 2000. Residual
hydrocarbons in a water-saturated medium: A detection strategy using ground penetrating
radar. Environmental Geosciences 7(4): 169-174.
Koefoed, O. 1979. Geosounding principles 1: Resistivity Sounding measurements.
Amsterdam: Elsevier Science Publishing Co.
Loke, M.H. & Barker, R.D. 1996. Rapid least-squares inversion of apparent resistivity pseudosection
by a quasi –
Newton
method. Geophysical prospecting 44:
131-152.
Mazac, O., Benes, L., Landa, I. & Maskova, A.
1990. Determination of the extent of oil contamination
in groundwater by geoelectrical method. In Geotechnical
and Environmental Geophysics Vol. II. 107-216, edited by Ward, S.H.
Olhoeft, G.R. 1992. Geophysical detection of
hydrocarbon and organic chemical contamination. Proc. of SAGEEP. 587-595.
Sauck, W.A. 2000. A model for the resistivity
structure of LNAPL plumes and their environs in sandy sediments. Journal of Applied Geophysics 44:151-165.
*Corresponding author; email: umar@ukm.my
|