Sains Malaysiana 38(4)(2009):
537–541
Kajian
Prestasi Pengumpul Suria Fotovoltan-Terma (Pv/T) dengan Plat Penyerap Lengkuk-∇
(Performance Study of Photovoltaic-Thermal
(Pv/T) Solar Collector with ∇-Grooved
Absorber Plate)
Mohd. Yusof Hj. Othman*
Institut Islam Hadhari, Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor D.E., Malaysia
Hafidz Ruslan, Kamaruzzaman Sopian & Goh
Li Jin
Institut Penyelidikan Tenaga Suria
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E., Malaysia
Received: 5 September 2008 / Accepted: 20 November 2008
ABSTRAK
Pengumpul suria hibrid fotovoltan-terma telah direka bentuk, dibina dan
dikaji prestasinya. Kelebihan
pengumpul ini adalah ianya mampu menjana tenaga elektrik dan tenaga haba secara
serentak. Modul fotovoltan jenis SHARP NE-80E2EA dengan kuasa maksimum 80 W telah digunakan untuk
menjana tenaga elektrik. Modul ini juga bertindak
sebagai penyerap haba kepada pengumpul yang direka. Penyerap
haba laluan tunggal, dengan lengkuk-∇ yang diperbuat daripada kepingan
aluminium yang tebalnya 0.7 mm digunakan untuk mengumpulkan haba di belakang
modul fotovoltan. Kajian telah dilakukan di bawah
simulator suria dengan lampu halogen pada keamatan 386 ± 8 Wm-2 dan 817 ± 8 Wm-2. Kelajuan udara yang
dialirkan dalam pengumpul PV/T adalah di antara (69.6 ± 2.2) × 10-4 kg/s hingga (695.8 ±
2.2) × 10-4 kg/s. Tujuan kajian ini adalah untuk membandingkan prestasi pengumpul PV/T dengan penyerap lengkuk-∇ dengan prestasi pengumpul PV/T tanpa penyerap lengkuk-∇. Kajian ini mendapati pengumpul suria PV/T dengan lengkuk-∇ mempunyai kecekapan yang lebih tinggi berbanding pengumpul tanpa lengkuk-∇. Kecekapan elektrik dan termanya juga meningkat dengan peningkatan keamatan
sinaran dan kadar aliran udara. Kata kunci:
Kecekapan
sistem; pengumpul suria PV/T; penyerap lekuk-∇; penjana elektrik; penjana haba
ABSTRACT
A hybrid
photovoltaic-thermal solar collector has been designed, built and its
performance has been studied. The advantage of the collector is that it can
generate electricity and heat simultaneously. Photovoltaic module SHARP NE-80E2EA with maximum output power of 80 W was used
to generate electricity. The module also acts as heat absorber of the collector.
Single pass ∇-groove
collector made of aluminium sheet with 0.7 mm thickness has been used to
collect heat generated. Study was conducted under a designed halogen lamps
solar simulator with intensities set at 386 ± 8 Wm-2 and 817 ± 8 Wm-2. The speed of air passing through the collector was set between (69.6
± 2.2) × 10-4 kg/s to (695.8 ± 2.2) × 10-4 kg/s. The objective of the study is to compare the
performance of PV/T collector with and
without ∇-groove
absorber. The study found that the PV/T collector with ∇-groove absorber plate has higher efficiency than the PV/T without ∇-groove absorber. The electrical and thermal efficiencies are also
increased when radiation intensity and speed of air increase.
Keywords: ∇-grooved absorber; electricity generator; PV/T solar collector; system efficiency; thermal
generator
REFERENCES
Bhargava, A.K.,
Garg, H.P. & Agarwal, R.K. 1991. Study of a hybrid solar system–solar air
heater combined with solar cell. Solar Energy 31(5): 471-479
Cox, C.H. & Raghuraman, P. 1985. Design
considerations for flat-plate photovoltaic/thermal collectors. Solar Energy 35: 227-245
Garg, H.P. &
Adhikari, R.S. 1998. Transient simulation of
conventional hybrid photovoltaic / thermal air heating collectors. Int
J Energy Res. 22: 547-62.
Karim, M.A. &
Hawlader, M.N.A. 2005. Performance evaluation of a
v-groove solar air collector for drying applications. App. Thermal
Eng. 26: 121-130
Kern Jr., E.C.
& Russell, M.C. 1978. Combined photovoltaic and
thermal hybrid collector system. Proc., 13th IEEE Photovoltaic
Specialist, Washington D.C. 1153-1157.
Niccolo, A.,
Giancarlo, C. & Francesco, v. 2007. Design, development and
performance monitoring of a photovoltaic- thermal (PvT) air collector. Renewable Energy 10: 6-22
Prakash, J. 1994. Transient
analysis of a photovoltaic-thermal solar collector for cogeneration of
electricity and hot air/ water. Energy Conservation
Management 35(11): 967-972.
Raghuraman, P. 1981. Analytical
predictions of liquid and air photovoltaic/thermal flat plate collector
performance. J. Sol. Energy Eng. 103: 291-298. Sopian, K.,
Othman, M.Y., Ruslan, M.H. & Yatim B. 2001. Performance of a Solar Assisted Drying System for Chilies. Int.
Journal of Renewable Energy Engineering vol 3(1): 268-272.
Tonui, J.K. &
Tripanagnostopoulos, Y. 2008. Performance improvement
of PV/T solar collectors with natural air flow operation. Solar
Energy 82: 1-12
Tripanagnostopoulos, Y., Nousia, T.H.,
Souliotis, M. & Yianoulis, P. 2002. Hybrid
photovoltaic/thermal solar systems. Solar Energy 72(3): 217-34.
Zondag, H. A.,
vries, D.W., Helden, W.G., Zolingen, R.J.C. & Steenhoven, A.A. 2003. The yield of
different combined Pv- thermal
collector designs. Solar Energy 74: 253-79.
*Corresponding author; email: myho@ukm.my
|