Sains Malaysiana 38(4)(2009): 537–541 

 

 

Kajian Prestasi Pengumpul Suria Fotovoltan-Terma (Pv/T) dengan Plat Penyerap Lengkuk-

(Performance Study of Photovoltaic-Thermal (Pv/T) Solar Collector with -Grooved Absorber Plate)

 

Mohd. Yusof Hj. Othman*

Institut Islam Hadhari, Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor D.E., Malaysia

 

Hafidz Ruslan, Kamaruzzaman Sopian & Goh Li Jin

Institut Penyelidikan Tenaga Suria

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E., Malaysia

 

Received: 5 September 2008  / Accepted: 20 November 2008

 

 

ABSTRAK

 

Pengumpul suria hibrid fotovoltan-terma telah direka bentuk, dibina dan dikaji prestasinya. Kelebihan pengumpul ini adalah ianya mampu menjana tenaga elektrik dan tenaga haba secara serentak. Modul fotovoltan jenis SHARP NE-80E2EA dengan kuasa maksimum 80 W telah digunakan untuk menjana tenaga elektrik. Modul ini juga bertindak sebagai penyerap haba kepada pengumpul yang direka. Penyerap haba laluan tunggal, dengan lengkuk- yang diperbuat daripada kepingan aluminium yang tebalnya 0.7 mm digunakan untuk mengumpulkan haba di belakang modul fotovoltan. Kajian telah dilakukan di bawah simulator suria dengan lampu halogen pada keamatan 386 ± 8 Wm-2 dan 817 ± 8 Wm-2. Kelajuan udara yang dialirkan dalam pengumpul PV/T adalah di antara (69.6 ± 2.2) × 10-4 kg/s hingga (695.8 ± 2.2) × 10-4 kg/s. Tujuan kajian ini adalah untuk membandingkan prestasi pengumpul PV/T dengan penyerap lengkuk- dengan prestasi pengumpul PV/T tanpa penyerap lengkuk-. Kajian ini mendapati pengumpul suria PV/T dengan lengkuk- mempunyai kecekapan yang lebih tinggi berbanding pengumpul tanpa lengkuk-. Kecekapan elektrik dan termanya juga meningkat dengan peningkatan keamatan sinaran dan kadar aliran udara. Kata kunci:

 

Kecekapan sistem; pengumpul suria PV/T; penyerap lekuk-; penjana elektrik; penjana haba

 

ABSTRACT

 A hybrid photovoltaic-thermal solar collector has been designed, built and its performance has been studied. The advantage of the collector is that it can generate electricity and heat simultaneously. Photovoltaic module SHARP NE-80E2EA with maximum output power of 80 W was used to generate electricity. The module also acts as heat absorber of the collector. Single pass -groove collector made of aluminium sheet with 0.7 mm thickness has been used to collect heat generated. Study was conducted under a designed halogen lamps solar simulator with intensities set at 386 ± 8 Wm-2 and 817 ± 8 Wm-2. The speed of air passing through the collector was set between (69.6 ± 2.2) × 10-4 kg/s to (695.8 ± 2.2) × 10-4 kg/s. The objective of the study is to compare the performance of PV/T collector with and without -groove absorber. The study found that the PV/T collector with -groove absorber plate has higher efficiency than the PV/T without -groove absorber. The electrical and thermal efficiencies are also increased when radiation intensity and speed of air increase.

 

Keywords: -grooved absorber; electricity generator; PV/T solar collector; system efficiency; thermal generator

 

REFERENCES

Bhargava, A.K., Garg, H.P. & Agarwal, R.K. 1991. Study of a hybrid solar system–solar air heater combined with solar cell. Solar Energy 31(5): 471-479

Cox, C.H. & Raghuraman, P. 1985. Design considerations for flat-plate photovoltaic/thermal collectors. Solar Energy 35: 227-245

Garg, H.P. & Adhikari, R.S. 1998. Transient simulation of conventional hybrid photovoltaic / thermal air heating collectors. Int J Energy Res. 22: 547-62.

Karim, M.A. & Hawlader, M.N.A. 2005. Performance evaluation of a v-groove solar air collector for drying applications. App. Thermal Eng. 26: 121-130

Kern Jr., E.C. & Russell, M.C. 1978. Combined photovoltaic and thermal hybrid collector system. Proc., 13th IEEE Photovoltaic Specialist, Washington D.C. 1153-1157.

Niccolo, A., Giancarlo, C. & Francesco, v. 2007. Design, development and performance monitoring of a photovoltaic- thermal (PvT) air collector. Renewable Energy 10: 6-22

Prakash, J. 1994. Transient analysis of a photovoltaic-thermal solar collector for cogeneration of electricity and hot air/ water. Energy Conservation Management 35(11): 967-972.

Raghuraman, P. 1981. Analytical predictions of liquid and air photovoltaic/thermal flat plate collector performance. J. Sol. Energy Eng. 103: 291-298. Sopian, K., Othman, M.Y., Ruslan, M.H. & Yatim B. 2001. Performance of a Solar Assisted Drying System for Chilies. Int. Journal of Renewable Energy Engineering vol 3(1): 268-272.

Tonui, J.K. & Tripanagnostopoulos, Y. 2008. Performance improvement of PV/T solar collectors with natural air flow operation. Solar Energy 82: 1-12

Tripanagnostopoulos, Y., Nousia, T.H., Souliotis, M. & Yianoulis, P. 2002. Hybrid photovoltaic/thermal solar systems. Solar Energy 72(3): 217-34.

Zondag, H. A., vries, D.W., Helden, W.G., Zolingen, R.J.C. & Steenhoven, A.A. 2003. The yield of different combined Pv- thermal collector designs. Solar Energy 74: 253-79.

  *Corresponding author; email: myho@ukm.my

previous