Sains Malaysiana 41(5)(2012): 561–568

 

Bacterial Cellulose Film Coating as Drug Delivery System: Physicochemical,

Thermal and Drug Release Properties

(Penyalutan Filem Selulosa Bakteria sebagai Satu Sistem Penyampaian Dadah:

Sifat-sifat Fizikokima, Terma dan Pelepasan Dadah)

 

Mohd Cairul Iqbal Mohd Amin*, Abadi Gumah Abadi, Naveed Ahmad

Haliza Katas & Jamia Azdina Jamal

Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz

50300, Kuala Lumpur, Malaysia

 

Received: 21 July 2011 / Accepted: 20 October 2011

 

ABSTRACT

 

There has been an increasing interest in the use of natural materials as drug delivery vehicles due to their biodegradability, biocompatibility and ready availability. These properties make bacterial cellulose (BC), from nata de coco, a promising biopolymer for drug delivery applications. The aim of this study was to investigate the film-coating and drug release properties of this biopolymer. Physicochemical, morphological and thermal properties of BC films were studied. Model tablets were film coated with BC, using a spray coating technique, and in vitro drug release studies of these tablets were investigated. It was found that BC exhibited excellent ability to form soft, flexible and foldable films without the addition of any plasticizer. They were comparable to AquacoatECD (with plasticizer) in tensile strength, percentage elongation and elasticity modulus. Differential scanning calorimetry (DSC) BC showed a high Tg value indicating thermally stability of films. These results suggest that BC can be used as novel aqueous film-coating agent with lower cost and better film forming properties than existing film-coating agents.

 

Keywords: Bacterial cellulose; drug delivery; DSC; film-coating; Young’s modulus

 

ABSTRAK

Penggunaan bahan semula jadi sebagai satu pendekatan penyampaian dadah semakin mendapat perhatian disebabkan sifatnya yang bioterurai, bioserasi dan mudah diperoleh. Kepelbagaian sifat ini menjadikan selulosa bakteria (BC) daripada nata de coco, menjanjikannya sebagai satu biopolimer untuk aplikasi penyampaian dadah. Kajian ini dilakukan bertujuan untuk menyelidiki sifat penyalutan filem dan pelepasan dadah biopolimer tersebut. Kajian fizikokimia, morpologi, dan terma BC telah dilakukan. Penyelidikan ke atas model tablet yang disalutiBC menggunakan kaedah penyalutan secara semburan dan kajian pelepasan dadah secarain vitro dari tablet telah dilakukan. Adalah didapati BC menunjukkan keupayaan yang hebat untuk membentuk filem yang lembut, fleksibel, mudah dilipat tanpa menambah sebarang bahan pemplastik. Ianya setanding dengan Aquacoat ECD (dengan bahan pemplastik) daripada segi kekuatan tensil, peratus pemanjangan dan modulus keelastikan. Pengesanan pembezaan kalorimeter (DSC) BC menunjukkan satu nilai Tg yang tinggi membuktikan kestabilan filem secara terma. Hasil keputusan mencadangkanBC boleh digunakan sebagai agen penyalut filem akues yang baru pada kos yang rendah dan bersifat pembentukan filem lebih baik berbanding agen penyalutan filem yang sedia ada.

 

Kata kunci: DSC; modulus Young; penyalutan filem; penyampaian dadah; selulosa bakteria

REFERENCES

Abu Diak, O., Bani-Jaber, A., Amro, B., Jones, D. & Andrews, G. P. 2007. The Manufacture and Characterization of Casein Films as Novel Tablet Coatings. Food and Bioproducts Processing 85(3): 284-290.

Amin, M.C.I.M., Halib, N. & Ahmad, I. 2010. Unique Stimuli Responsive Characteristics of Electron Beam Synthesized Bacterial Cellulose/Acrylic Acid Composite. Journal of Applied Polymer Science 116(5): 2920–2929.

Béchard, S. R., Levy, L. & Clas, S.D. 1995. Thermal, mechanical and functional properties of cellulose acetate phthalate (CAP) coatings obtained from neutralized aqueous solutions. International Journal of Pharmaceutics 114(2): 205-213.

Chen, P., Kim, H.-S., Kwon, S.-M., Yun, Y. S. & Jin, H.-J. 2009. Regenerated bacterial cellulose/multi-walled carbon nanotubes composite fibers prepared by wet-spinning. Current Applied Physics. 9(2, Suppl. 1): 96-99.

Chen, S., Zou, Y., Yan, Z., Shen, W., Shi, S., Zhang, X. & Wang, H. 2009. Carboxymethylated-bacterial cellulose for copper and lead ion removal. Journal of Hazardous Materials 161(2-3): 1355-1359.

Cole, G., Hogan, J. & Aulton, M. E. 1995. Pharmaceutical Coating Technology. London UK, Bristol USA: Taylor & Francis.

Czaja, W. K., Young, D. J., Kawecki, M. & Brown Jr, R. M. 2007. The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8(1): 1-12.

Fulzele, S. V., Satturwar, P. M. & Dorle, A. K. 2002. Polymerized rosin: novel film forming polymer for drug delivery. International Journal of Pharmaceutics 249(1-2): 175-184.

George, J., Ramana, K. V., Sabapathy, S. N., Jagannath, J. H. & Bawa, A. S. 2005. Characterization of chemically treated bacterial (Acetobacter xylinum) biopolymer: Some thermo-mechanical properties. International Journal of Biological Macromolecules 37(4): 189-194.

Grande, C. J., Torres, F.G., Gomez, C.M., Troncoso, O.P., Canet-Ferrer, J. & Martínez-Pastor, J. 2009. Development of self-assembled bacterial cellulose–starch nanocomposites. Materials Science & Engineering C 29(4): 1098-1104.

Grzegorczyn, S. & Slezak, A. 2007. Kinetics of concentration boundary layers buildup in the system consisted of microbial cellulose biomembrane and electrolyte solutions. Journal of Membrane Science 304(1-2): 148-155.

Halib, N., Amin, M.C.I.M., Ahmad, I., Hashim, Z. M. & Jamal, N. 2009. Swelling of Bacterial Cellulose-Acrylic Acid Hydrogels: Sensitivity Towards External Stimuli. Sains Malaysiana38(5): 785–791.

Hong, F. & Qiu, K. 2008. An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770. Carbohydrate Polymers 72(3): 545-549.

Hsieh, Y.C., Yano, H., Nogi, M. & Eichhorn, S. J. 2008. An estimation of the Young’s modulus of bacterial cellulose filaments. Cellulose 15(4): 507-513.

Hussain, M.A. 2008. Unconventional Synthesis and Characterization of Novel Abietic Acid Esters of Hydroxypropylcellulose as Potential Macromolecular Prodrugs. Journal of Polymer Science Part A: Polymer Chemistry 46(2): 747–752.

Hu, W., Chen, S., Li, X., Shi, S., Shen, W., Zhang, X. & Wang, H. 2009. In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes. Materials Science and Engineering C 29(4): 1216-1219.

Klemm, D., Schumann, D., Udhardt, U. & Marsch, S. 2001. Bacterial synthesized cellulose -- artificial blood vessels for microsurgery. Progress in Polymer Science 26(9): 1561-1603.

Kurosumi, A., Sasaki, C., Yamashita, Y. & Nakamura, Y. 2009. Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydrate Polymers 76(2): 333-335.

Kwok, T.S.H., Sunderland, B.V. & Heng, P.W.S. 2004. An investigation on the influence of a vinyl pyrrolidone/vinyl acetate copolymer on the moisture permeation, mechanical and adhesive properties of aqueous-based hydroxypropyl methylcellulose film coatings. Chemical & Pharmaceutical Bulletin 52(7): 790-796.

Moreira, S., Silva, N.B., Almeida-Lima, J., Rocha, H.A.O., Medeiros, S.R.B., Alves Jr, C., & Gama, F.M. 2009. BC nanofibres: In vitro study of genotoxicity and cell proliferation. Toxicology Letters 189(3): 235-241.

Nishi, Y., Uryu, M., Yamanaka, S., Watanabe, K., Kitamura, N., Iguchi, M., & Mitsuhashi, S. 1990. The structure and mechanical properties of sheets prepared from bacterial cellulose. Journal of Materials Science 25(6): 2997-3001.

Patel, U.D. & Suresh, S. 2008. Complete dechlorination of pentachlorophenol using palladized bacterial cellulose in a rotating catalyst contact reactor. Journal of Colloid and Interface Science 319(2): 462-469.

Phisalaphong, M., Suwanmajo, T. & Tammarate, P. 2008. Synthesis and characterization of bacterial cellulose/alginate blend membranes. Journal of Applied Polymer Science 107(5): 3419-3424.

Rangaiah KV, Chattaraj, SC & SK, D. 1997. Effects of solvents, temperature and plasticizer on film coating of tablets. Drug Development and Industrial Pharmacy 23: 419-423.

Saibuatong, O.-a. & Phisalaphong, M. 2010. Novo aloe vera-bacterial cellulose composite film from biosynthesis. Carbohydrate Polymers 79(2): 455-460.

Säkkinen, M., Seppälä, U., Heinänen, P., & Marvola, M. 2002. In vitro evaluation of microcrystalline chitosan (MCCh) as gel-forming excipient in matrix granules. European Journal of Pharmaceutics and Biopharmaceutics54(1): 33-40.

Satturwar, P.M., Fulzele, S.V., Panyam, J., Mandaogade, P.M., Mundhada, D.R., Gogte, B. B., Labhasetwar, V., & Dorle, A.K. 2004. Evaluation of new rosin derivatives for pharmaceutical coating. International Journal of Pharmaceutics 270(1-2): 27-36.

Shoda, M. & Sugano, Y. 2005. Recent advances in bacterial cellulose production. Biotechnology and Bioprocess Engineering 10(1): 1-8.

Shotton, E. & Ridgway, K. 1974. Physical Pharmaceutics. Oxford: Clarendon Press.

Tarvainen, M., Sutinen, R., Peltonen, S., Mikkonen, H., Maunus, J., Vähä-Heikkilä, K., Lehto, V.-P. & Paronen, P. 2003. Enhanced film-forming properties for ethyl cellulose and starch acetate using n-alkenyl succinic anhydrides as novel plasticizers. European Journal of Pharmaceutical Sciences 19(5): 363-371.

Tarvainen, M., Sutinen, R., Peltonen, S., Tiihonen, P., & Paronen, P. 2002. Starch acetate—A novel film-forming polymer for pharmaceutical coatings. Journal of Pharmaceutical Sciences 91(1): 282-289.

Vandamme, E.J., De Baets, S., Vanbaelen, A., Joris, K. & De Wulf, P. 1998. Improved production of bacterial cellulose and its application potential. Polymer Degradation and Stability 59(1-3): 93-99.

Wang, Y., Luo, Q., Peng, B. & Pei, C. 2008. A novel thermotropic liquid crystalline - Benzoylated bacterial cellulose. Carbohydrate Polymers 74(4): 875-879.

Wan, Y.Z., Luo, H., He, F., Liang, H., Huang, Y., & Li, X. L. 2009. Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fibre-reinforced starch biocomposites. Composites Science and Technology 69(7-8): 1212-1217.

Wippermann, J., Schumann, D., Klemm, D., Kosmehl, H., Salehi-Gelani, S., & Wahlers, T. 2009. Preliminary Results of Small Arterial Substitute Performed with a New Cylindrical Biomaterial Composed of Bacterial Cellulose. European Journal of Vascular and Endovascular Surgery 37(5): 592-596.

Yuasa, H., Kaneshige, J., Ozeki, T., Kasai, T., Eguchi, T. & Ishiwaki, N. 2002. Application of acid-treated yeast cell wall (AYC) as a pharmaceutical additive. III. AYC aqueous coating onto granules and film formation mechanism of AYC. International Journal of Pharmaceutics 237(1-2): 15-22.

 

 

*Corresponding author; email: mciamin@pharmacy.ukm.my

 

 

 

previous