Sains Malaysiana 41(5)(2012): 561–568
Bacterial Cellulose Film Coating as Drug
Delivery System: Physicochemical,
Thermal and Drug Release Properties
(Penyalutan Filem Selulosa Bakteria sebagai Satu Sistem Penyampaian Dadah:
Sifat-sifat Fizikokima, Terma dan Pelepasan Dadah)
Mohd Cairul Iqbal Mohd Amin*, Abadi Gumah Abadi, Naveed Ahmad
Haliza Katas & Jamia Azdina Jamal
Faculty
of Pharmacy, Universiti Kebangsaan
Malaysia, Jalan Raja Muda Abdul Aziz
50300,
Kuala Lumpur, Malaysia
Received:
21 July 2011 / Accepted: 20 October 2011
ABSTRACT
There has been an increasing interest in
the use of natural materials as drug delivery vehicles due to their
biodegradability, biocompatibility and ready availability. These properties
make bacterial cellulose (BC), from nata de
coco, a promising biopolymer for drug delivery applications. The
aim of this study was to investigate the film-coating and drug release
properties of this biopolymer. Physicochemical, morphological and thermal
properties of BC films were studied.
Model tablets were film coated with BC, using a
spray coating technique, and in
vitro drug release studies of these tablets were investigated. It
was found that BC exhibited excellent
ability to form soft, flexible and foldable films without the addition of any
plasticizer. They were comparable to AquacoatECD (with
plasticizer) in tensile strength, percentage elongation and elasticity modulus.
Differential scanning calorimetry (DSC) BC showed a
high Tg value
indicating thermally stability of films. These results suggest that BC can be
used as novel aqueous film-coating agent with lower cost and better film
forming properties than existing film-coating agents.
Keywords:
Bacterial cellulose; drug delivery; DSC; film-coating; Young’s modulus
ABSTRAK
Penggunaan bahan semula jadi sebagai satu pendekatan penyampaian dadah semakin mendapat perhatian disebabkan sifatnya yang bioterurai, bioserasi dan mudah diperoleh. Kepelbagaian sifat ini menjadikan selulosa bakteria (BC) daripada nata de coco, menjanjikannya sebagai satu biopolimer untuk aplikasi penyampaian dadah. Kajian ini dilakukan bertujuan untuk menyelidiki sifat penyalutan filem dan pelepasan dadah biopolimer tersebut. Kajian fizikokimia, morpologi, dan terma BC telah dilakukan. Penyelidikan ke atas model tablet yang disalutiBC menggunakan kaedah penyalutan secara semburan dan kajian pelepasan dadah secarain vitro dari tablet telah dilakukan. Adalah didapati BC menunjukkan keupayaan yang hebat untuk membentuk filem yang lembut, fleksibel, mudah dilipat tanpa menambah sebarang bahan pemplastik. Ianya setanding dengan Aquacoat ECD (dengan bahan pemplastik) daripada segi kekuatan tensil, peratus pemanjangan dan modulus keelastikan. Pengesanan pembezaan kalorimeter (DSC) BC menunjukkan satu nilai Tg yang tinggi membuktikan kestabilan filem secara terma. Hasil keputusan mencadangkanBC boleh digunakan sebagai agen penyalut filem akues yang baru pada kos yang rendah dan bersifat pembentukan filem lebih baik berbanding agen penyalutan filem yang sedia ada.
Kata kunci: DSC; modulus Young; penyalutan filem; penyampaian dadah; selulosa bakteria
REFERENCES
Abu Diak, O., Bani-Jaber, A., Amro, B., Jones,
D. & Andrews, G. P. 2007. The Manufacture and Characterization of Casein
Films as Novel Tablet Coatings. Food and Bioproducts Processing 85(3): 284-290.
Amin, M.C.I.M., Halib,
N. & Ahmad, I. 2010. Unique Stimuli Responsive Characteristics of Electron
Beam Synthesized Bacterial Cellulose/Acrylic Acid Composite. Journal of
Applied Polymer Science 116(5): 2920–2929.
Béchard, S. R., Levy, L. & Clas, S.D. 1995. Thermal, mechanical and functional
properties of cellulose acetate phthalate (CAP) coatings obtained from
neutralized aqueous solutions. International Journal of Pharmaceutics 114(2):
205-213.
Chen, P., Kim, H.-S.,
Kwon, S.-M., Yun, Y. S. & Jin, H.-J. 2009. Regenerated bacterial
cellulose/multi-walled carbon nanotubes composite fibers prepared by
wet-spinning. Current Applied Physics. 9(2, Suppl. 1): 96-99.
Chen, S., Zou,
Y., Yan, Z., Shen, W., Shi, S., Zhang, X. & Wang,
H. 2009. Carboxymethylated-bacterial cellulose for copper and lead ion removal. Journal
of Hazardous Materials 161(2-3): 1355-1359.
Cole, G., Hogan, J.
& Aulton, M. E. 1995. Pharmaceutical
Coating Technology. London UK, Bristol USA: Taylor & Francis.
Czaja, W. K., Young, D. J., Kawecki, M. & Brown Jr, R. M.
2007. The future
prospects of microbial cellulose in biomedical applications. Biomacromolecules 8(1): 1-12.
Fulzele, S. V., Satturwar,
P. M. & Dorle, A. K. 2002. Polymerized rosin: novel
film forming polymer for drug delivery. International Journal of
Pharmaceutics 249(1-2): 175-184.
George, J., Ramana,
K. V., Sabapathy, S. N., Jagannath,
J. H. & Bawa, A. S. 2005. Characterization of
chemically treated bacterial (Acetobacter xylinum) biopolymer: Some thermo-mechanical properties. International
Journal of Biological Macromolecules 37(4): 189-194.
Grande, C. J., Torres,
F.G., Gomez, C.M., Troncoso, O.P., Canet-Ferrer, J. & Martínez-Pastor,
J. 2009. Development of self-assembled bacterial cellulose–starch nanocomposites. Materials Science &
Engineering C 29(4): 1098-1104.
Grzegorczyn, S. & Slezak, A. 2007. Kinetics of concentration boundary layers buildup in the
system consisted of microbial cellulose biomembrane and electrolyte solutions. Journal of Membrane Science 304(1-2):
148-155.
Halib, N., Amin, M.C.I.M., Ahmad, I., Hashim, Z. M. & Jamal, N. 2009. Swelling of Bacterial
Cellulose-Acrylic Acid Hydrogels: Sensitivity Towards External Stimuli. Sains Malaysiana38(5):
785–791.
Hong, F. & Qiu,
K. 2008. An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a
model strain Acetobacter aceti subsp. xylinus ATCC 23770. Carbohydrate Polymers 72(3):
545-549.
Hsieh, Y.C., Yano, H., Nogi, M. & Eichhorn, S. J.
2008. An estimation of the Young’s modulus of bacterial cellulose
filaments. Cellulose 15(4): 507-513.
Hussain, M.A. 2008. Unconventional Synthesis and
Characterization of Novel Abietic Acid Esters of Hydroxypropylcellulose as Potential Macromolecular Prodrugs. Journal of Polymer Science Part A: Polymer
Chemistry 46(2): 747–752.
Hu, W., Chen, S., Li,
X., Shi, S., Shen, W., Zhang, X. & Wang, H. 2009. In situ synthesis of
silver chloride nanoparticles into bacterial cellulose membranes. Materials
Science and Engineering C 29(4): 1216-1219.
Klemm, D., Schumann, D., Udhardt,
U. & Marsch, S. 2001. Bacterial synthesized
cellulose -- artificial blood vessels for microsurgery. Progress in Polymer
Science 26(9): 1561-1603.
Kurosumi, A., Sasaki, C.,
Yamashita, Y. & Nakamura, Y. 2009. Utilization of various fruit juices as carbon source for
production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydrate Polymers 76(2):
333-335.
Kwok, T.S.H., Sunderland, B.V. & Heng, P.W.S. 2004. An investigation on the influence of a
vinyl pyrrolidone/vinyl acetate copolymer on the
moisture permeation, mechanical and adhesive properties of aqueous-based hydroxypropyl methylcellulose film coatings. Chemical
& Pharmaceutical Bulletin 52(7): 790-796.
Moreira, S., Silva,
N.B., Almeida-Lima, J., Rocha, H.A.O., Medeiros, S.R.B., Alves Jr, C., & Gama, F.M. 2009. BC nanofibres:
In vitro study of genotoxicity and cell
proliferation. Toxicology Letters 189(3): 235-241.
Nishi, Y., Uryu, M., Yamanaka, S., Watanabe, K., Kitamura, N., Iguchi,
M., & Mitsuhashi, S. 1990. The structure and mechanical properties
of sheets prepared from bacterial cellulose. Journal of Materials Science 25(6):
2997-3001.
Patel, U.D.
& Suresh, S. 2008. Complete dechlorination of
pentachlorophenol using palladized bacterial
cellulose in a rotating catalyst contact reactor. Journal of Colloid and
Interface Science 319(2): 462-469.
Phisalaphong, M., Suwanmajo, T. & Tammarate, P. 2008. Synthesis and characterization of
bacterial cellulose/alginate blend membranes. Journal of Applied Polymer
Science 107(5): 3419-3424.
Rangaiah KV, Chattaraj, SC & SK, D. 1997. Effects
of solvents, temperature and plasticizer on film coating of tablets. Drug
Development and Industrial Pharmacy 23: 419-423.
Saibuatong, O.-a. & Phisalaphong, M. 2010. Novo aloe vera-bacterial cellulose
composite film from biosynthesis. Carbohydrate Polymers 79(2):
455-460.
Säkkinen,
M., Seppälä, U., Heinänen,
P., & Marvola, M. 2002. In vitro evaluation of microcrystalline chitosan (MCCh) as gel-forming excipient in matrix granules. European
Journal of Pharmaceutics and Biopharmaceutics54(1):
33-40.
Satturwar,
P.M., Fulzele, S.V., Panyam,
J., Mandaogade, P.M., Mundhada,
D.R., Gogte, B. B., Labhasetwar,
V., & Dorle, A.K. 2004. Evaluation of new rosin derivatives for pharmaceutical coating. International Journal of Pharmaceutics 270(1-2): 27-36.
Shoda, M.
& Sugano, Y. 2005. Recent advances in bacterial cellulose production. Biotechnology
and Bioprocess Engineering 10(1): 1-8.
Shotton, E.
& Ridgway, K. 1974. Physical Pharmaceutics. Oxford: Clarendon Press.
Tarvainen, M., Sutinen, R., Peltonen, S., Mikkonen, H., Maunus, J., Vähä-Heikkilä, K., Lehto, V.-P. & Paronen, P. 2003.
Enhanced film-forming properties for ethyl cellulose and starch acetate using
n-alkenyl succinic anhydrides as novel plasticizers. European
Journal of Pharmaceutical Sciences 19(5): 363-371.
Tarvainen, M., Sutinen, R., Peltonen, S., Tiihonen, P., & Paronen, P.
2002. Starch acetate—A novel film-forming polymer for pharmaceutical
coatings. Journal of Pharmaceutical Sciences 91(1): 282-289.
Vandamme, E.J.,
De Baets, S., Vanbaelen,
A., Joris, K. & De Wulf,
P. 1998. Improved production of bacterial cellulose and its
application potential. Polymer Degradation and Stability 59(1-3):
93-99.
Wang, Y., Luo, Q., Peng, B. &
Pei, C. 2008. A novel thermotropic liquid crystalline - Benzoylated bacterial cellulose. Carbohydrate Polymers 74(4): 875-879.
Wan,
Y.Z., Luo, H., He, F., Liang, H., Huang, Y., &
Li, X. L. 2009. Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fibre-reinforced
starch biocomposites. Composites Science and
Technology 69(7-8): 1212-1217.
Wippermann,
J., Schumann, D., Klemm, D., Kosmehl,
H., Salehi-Gelani, S., & Wahlers,
T. 2009. Preliminary Results of Small Arterial
Substitute Performed with a New Cylindrical Biomaterial Composed of Bacterial
Cellulose. European Journal of Vascular and Endovascular Surgery 37(5):
592-596.
Yuasa,
H., Kaneshige, J., Ozeki,
T., Kasai, T., Eguchi, T. & Ishiwaki,
N. 2002. Application of acid-treated
yeast cell wall (AYC) as a pharmaceutical additive. III. AYC aqueous
coating onto granules and film formation mechanism of AYC. International
Journal of Pharmaceutics 237(1-2): 15-22.
*Corresponding
author; email: mciamin@pharmacy.ukm.my
|