Sains Malaysiana 42(2)(2013): 187–192

 

Fabrication and Transport Performance Characterization of

Chemically-doped Three-branch Junction Graphene Device

(Fabrikasi dan Ciri Prestasi Angkutan Peranti Grafin Berstruktur Tiga Cabang yang Didop Secara Kimia)

 

Shaharin Fadzli Abd Rahman*

Faculty of Electrical Engineering, Universiti Teknologi Malaysia 81310 UTM Skudai, Johor, Malaysia

 

Seiya Kasai

Graduate School of Information Science and Technology and Research Center for Integrated Quantum Electronics, Hokkaido University N14, W9, Sapporo 060-0814, Japan

 

Abdul Manaf Hashim

Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia International Campus, Jalan Semarak, 54100 Kuala Lumpur, Malaysia

 

Received: 7 January 2012 / Accepted: 21 May 2012

 

ABSTRACT

 

A graphene-based three-branch nanojunction (TBJ) device having nanowire width of 200 nm was successfully fabricated. The layer number of graphene prepared by mechanical exfoliation was determined using a simple optical contrast method which showed good agreement with theoretical value. n-type doping by Polyethylene imines (PEI) was done to control the position of Dirac point. Baking and PEI doping was found to decrease contact resistance and increase the carrier mobility. The chemically-doped TBJ graphene showed carrier mobility of 20000 cm2/Vs, which gave related mean free path of 175 nm.

 

Keywords: Chemical doping; graphene; three-branch junction device

 

ABSTRAK

Peranti berstruktur tiga cabang (TBJ) daripada grafin yang mempunyai cabang selebar 200 nm telah berjaya difabrikasi. Bilangan lapisan grafin yang telah disediakan menggunakan kaedah pengelupasan secara mekanikal, telah ditentukan menggunakan kaedah kontras optik yang mudah, dan keputusan uji kaji selari dengan nilai teori. Pendopan kepada jenis-n telah dibuat menggunakan polyethylene imines (PEI) untuk mengawal kedudukan titik Dirac. Pemanasan dan pendopan oleh PEI didapati telah merendahkan rintangan sentuhan logam dan menaikkan mobiliti pembawa. Grafin TBJ yang didop secara kimia telah menunjukkan mobiliti pembawa setinggi 20000 cm2/Vs, menjadikan purata laluan bebas sejauh 175 nm.

 

Kata kunci: Grafin; pendadahan secara kimia; peranti berstruktur tiga cabang

REFERENCES

Abd Rahman, S.F., Nakata, D., Shiratori, Y. & Kasai, S. 2009. Boolean logic gates utilizing gaAs three-branch nanowire junctions controlled by schottky wrap gates. Japanese Journal of Applied Physics 48: 06FD01.

Blake, P., Hill, E.W., Castro Neto, A.H., Novoselov, K.S., Jiang, D., Yang, R., Booth, T.J. & Geim, A.K. 2007. Making graphene visible. Applied Physics Letters 91(6): 063124.

Farmer, D.B., Golizadeh-Mojarad, R., Perebeinos, V., Lin, Y-M., Tulevski, G.S., Tsang, J.C. & Avouris, P. 2008. Chemical doping and electron-hole donduction asymmetry in graphene devices. Nano Letters 9(1): 388-392.

Gockeritz, R., Pezoldt, J. & Schwierz, F. 2011. Epitaxial graphene three-terminal junctions. Applied Physics Letters 99(17): 173111.

Hwang, E.H., Adam, S. & Das Sarma, S. 2007. Transport in chemically doped graphene in the presence of adsorbed molecules. Physical Review B 76(19): 195421.

Irie, H. & Sobolewski, R. 2010. Terahertz electrical response of nanoscale three-branch junctions. Journal of Applied Physics 107 (8): 084315-084315-7.

Jacobsen, A., Shorubalko, I., Maag, L., Sennhauser, U. & Ensslin, K. 2010. Rectification in three-terminal graphene junctions. Applied Physics Letters 97(3): 032110.

Kasai, S., Nakamura, T., Abd Rahman, S.F. & Shiratori, Y. 2008. Study on nonlinear electrical characteristics of gaAs-based three-branch nanowire junctions controlled by schottky wrap gates. Japanese Journal of Applied Physics 47: 4958.

Mateos, J., Vasallo, B.G., Pardo, D., Gonzalez, T., Galloo, J.S., Bollaert, S., Roelens, Y. & Cappy, A. 2003. Microscopic modeling of nonlinear transport in ballistic nanodevices. Electron Devices, IEEE Transactions on 50(9): 1897-1905.

Mayorov, A.S., Gorbachev, R.V., Morozov, S.V., Britnell, L., Rashid J., Ponomarenko, L.A., Blake, P., Novoselov, K.S., Watanabe, K., Taniguchi, T. & Geim, A.K. 2011. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Letters 11(6): 2396-2399.

Ni, Z.H., Wang, H.M., Kasim, J., Fan, H.M., Yu, T., Wu, Y.H., Feng, Y.P. & Shen, Z.X. 2007. Graphene thickness determination using reflection and contrast spectroscopy. Nano Letters 7(9): 2758-2763.

Ni, Z.H., Wang, H.M., Luo, Z.Q., Wang, Y.Y., Yu, T., Wu, Y.H. & Shen, Z.X. 2010. The effect of vacuum annealing on graphene. Journal of Raman Spectroscopy 41(5): 479-483.

Nolen, C.M., Denina, G., Teweldebrhan, D., Bhanu, B. & Balandin, A.A. 2011. High-throughput large-area automated identification and quality control of graphene and few-layer graphene films. ACS Nano 5(2): 914-922.

Rumyantsev, S., Liu, G., Stillman, W., Shur, M. & Balandin, A.A. 2010. Electrical and noise characteristics of graphene field-effect transistors: ambient effects, noise sources and physical mechanisms. Journal of Physics: Condensed Matter 22(39): 395302.

Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I. & Novoselov, K.S. 2007. Detection of individual gas molecules adsorbed on graphene. Nature Materials 6(9): 652-655.

Shaffique, A., Hwang, E.H., Galitski, V.M. & Das Sarma, S. 2007. Aself-consistent theory for graphene transport. Proceedings of the National Academy of Sciences of the United States of America 104(47): 18392-18397.

Shorubalko, I., Xu, H.Q., Maximov, I., Nilsson, D., Omling, R., Samuelson, L. & Seifert. W. 2002. Anovel frequency-multiplication device based on three-terminal ballistic junction. Electron Device Letters, IEEE 23(7): 377-379.

Venugopal, A., Colombo, L. & Vogel, E.M. 2010. Contact resistance in few and multilayer graphene devices. Applied Physics Letters 96(1): 013512.

Worschech, L., Schliemann, A., Reitzenstein, S., Hartmann, P. & Forchel, A. 2002. Microwave rectification in ballistic nanojunctions at room temperature. Microelectronic Engineering 63(1-3): 217-221.

Xu, H.Q. 2001. Electrical properties of three-terminal ballistic junctions. Applied Physics Letters 78(14): 2064-2066.

 

 

*Corresponding author; email: shaharinfadzli@fke.utm.my

 

 

previous