Sains Malaysiana 42(4)(2013): 529–535
Molecularly
Imprinted Polymer Synthesis Using RAFT Polymerisation
(Sintesis Polimer Molekul Tercetak Menggunakan Pempolimeran RAFT)
Peter
A.G. Cormack* & Faizatul Shimal Mehamod
WestCHEM,
Department of Pure and Applied Chemistry, University of Strathclyde
Thomas
Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, Scotland
Faizatul
Shimal Mehamod
Department
of Chemical Sciences, Faculty of Science and Technology
Universiti
Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
Received:
26 June 2011 / Accepted: 9 May 2012
ABSTRACT
In this paper, the synthesis and characterisation of
caffeine-imprinted polymers are described. The polymers were prepared in
monolithic form via both reversible addition-fragmentation chain-transfer (RAFT)
polymerisation and conventional free radical polymerisation, using methacrylic
acid and ethylene glycol dimethacrylate as the functional monomer and
crosslinking agent, respectively. The potential benefits in applying RAFT polymerisation techniques towards the synthesis of molecularly
imprinted polymers (MIPs) are explored and elucidated. The
pore structures of the polymers produced were characterised by nitrogen
sorption porosimetry and the molecular recognition properties of representative
products were evaluated in high-performance liquid chromatography (HPLC)
mode. Molecular imprinting effects were confirmed by analysing the relative
retentions of analytes on imprinted and non-imprinted HPLC stationary
phases. It was found that a caffeine-imprinted polymer synthesised by RAFT polymerisation was superior to a polymer prepared using a
conventional synthetic approach; the imprinting factor and column efficiency
were found to be higher for the former material.
Keywords: Caffeine; molecular recognition; molecularly imprinted
polymers; novel stationary phases; RAFT polymerisation
ABSTRAK
Dalam penyelidikan ini, sintesis dan pencirian terhadap polimer
tercetak-kafein telah diterangkan. Polimer tersebut telah disediakan dalam
bentuk monolitik melalui pempolimeran tambahan-fragmentasi rantai pindah boleh
balik (RAFT) dan pempolimeran konvensional radikal bebas,
menggunakan asid metaakrilik sebagai monomer berfungsi dan etilena glikol
sebagai ejen taut silang. Potensi yang dapat dimanfaatkan dengan menggunakan teknik
pempolimeran RAFT dalam sintesis polimer molekul tercetak (MIPs)
telah diterokai dan difahami. Struktur liang polimer yang terhasil telah
dicirikan dengan menggunakan porosimeter penyerapan nitrogen manakala
pengecaman sifat molekul produk tersebut telah dinilai dalam mod kromatografi
cecair berprestasi tinggi (HPLC). Hasil pencetakan molekul
dikenal pasti dengan menganalisis perbezaan relatif antara puncak
analit-tercetak dan analit-tidak tercetak dalam fasa gerak HPLC.
Didapati polimer tercetak-kafein melalui pempolimeran RAFT adalah
lebih baik daripada polimer yang disintesis melalui kaedah konvensional; kesan
pencetakan dan kecekapan kolum didapati lebih tinggi bagi bahan yang pertama
tadi.
Kata kunci: Fasa gerak
terbaharu; kafein; pempolimeran RAFT;
pengecaman molekul; polimer molekul tercetak
REFERENCES
Bindushree, R., Ranjan, R. & William, J.B. 2006. Surface
initiated polymerizations from silica nanoparticles. Soft Matter 2(15):
386-396.
Cormack, P.A.G. & Zurutuza-Elorza, A. 2004. Molecularly
imprinted polymers: Synthesis and characterisation. J. Chromatogr. B. 804:
173-182.
Farnoosh, R. & Titirici, M.M. 2008. Thin thermo-responsive
polymer films onto the pore system of chromatographic beads via reversible
addition–fragmentation chain transfer polymerization. New J. Chem. 32:
1409-1414.
Georges, M.K., Veregin, R.P.N., Kazmaier, P.M. & Hamer, G.K.
1993. Narrow molecular weight resins by a free-radical polymerization process. Macromolecules 26: 2987-2988.
Goto, A. & Fukuda, T. 2004. Kinetics of living radical
polymerization. Prog. Polym. Sci. 29: 329-385.
Haupt, K. & Mosbach, K. 2000. Molecularly imprinted polymers
andtheir use in biomimetic sensors. Chem. Rev. 100: 2495-2504.
Hawker, C.J. 1997. Living free radical polymerization: A unique
technique for the preparation of controlled macromolecular architectures. Acc.
Chem. Res. 30: 373-382.
Hawker, C.J., Bosman, A.W. & Harth, E. 2001. New polymer
synthesis by nitroxide mediated living radical polymerizations.Chem. Rev. 101:
3661-3688.
Kempe, M. & Mosbach, K. 1995. Molecular imprinting used for
chiral separations. J. Chromatogr. A. 694: 3-13.
Lai, E.P.C., Fafara, A., Vander Noot, V.A., Kono, M. &
Polosky, B. 1998. Surface plasmon resonance sensors using molecularly imprinted
polymers for sorbent assay of theophylline, caffeine, and xanthine. Can. J.
Chem. 76: 265-273.
Liu, B., Algy, K., James, T.G. & Perrier, S. 2005. Influence
of reaction parameters on the synthesis of hyperbranched polymers via
reversible addition fragmentation chain transfer (RAFT) polymerization. Polymer 46: 6293-6299.
Lu, C.H., Zhou, W.H., Han, B., Yang, H.H., Chen, X. & Wang, X.R.
2007. Surface-imprinted core-shell nanoparticles for sorbent assays. Anal.
Chem. 79: 5457-5461.
Malic, N. & Evans, R.A. 2006. Synthesis of carboxylic acid and
ester mid-functionalised polymers via RAFT polymerisation and ATRP. Aust. J.
Chem. 59: 763-768.
Matyjaszewski, K. & Xia. J. 2001. Atom transfer radical
polymerization. Chem. Rev. 101: 2921-2990.
Mayadunne, R.T.A., Rizzardo, E., Chiefari, J., Chong, Y.K., Moad,
G. & Thang, S.H. 1999. Living radical polymerization with reversible
addition-fragmentation chain transfer (RAFT polymerization) using
dithiocarbamates as chain transfer agents. Macromolecules 32: 6977-6980.
McLeary, J.B. & Klumperman, B. 2006. RAFT mediated
polymerisation in heterogeneous media. Soft Matter 2: 45-53.
Moad, G., Chiefari, J., Chong, Y.K., Krstina, J., Mayadunne,
R.T.A., Postma, A., Rizzardo, E. & Thang, S.H. 2000. Living free radical
polymerization with reversible addition - fragmentation chain transfer (the
life of RAFT). Polym. Int. 49: 993-1001.
Moad, G., Chong, Y.K., Postma, A., Rizzardo, E. & Thang, S.H.
2005. Advances in RAFT polymerization: The synthesis of polymers with defined
end-groups. Polymer 46: 8458-8468.
Moad, G., Rizzardo, E. & Thang, S.H. 2005. Living radical
polymerization by the RAFT process. Aust. J. Chem. 58: 379-410.
Moad, G., Rizzardo, E. & Thang, S.H. 2008. Advances in RAFT
polymerization: The synthesis of polymers with defined end-groups. Polymer 49:
1079-1131.
Monteiro, M.J. & de Brouwer, H. 2000. Intermediate radical
termination as the mechanism for retardation in reversible
addition−fragmentation chain transfer polymerization. Macromolecules 34:
349-352.
O’Connor, N.A., Paisner, D.A., Huryn, D. & Shea, K.J. 2007.
Screening of 5HT1A receptor antagonists using molecularly imprinted polymers. J.
Am. Chem. Soc.129: 1680-1689.
Pan, G., Zu, B., Guo, X., Zhang, Y., Li, C. & Zhang, H. 2009.
Preparation of molecularly imprinted polymer microspheres via reversible
addition-fragmentation chain transfer precipitation polymerization. Polymer 50:
2819-2825.
Perrier, S., Davis, T.P., Carmichael, A.J. & Haddleton, D.M.
2003. Reversible addition-fragmentation chain transfer polymerization of
methacrylate, acrylate and styrene monomers in 1-alkyl-3-methylimidazolium
hexfluorophosphate. Eur. Pol. J. 39: 417-422.
Perrier, S. & Takolpuckdee, P. 2005. Macromolecular design via
reversible addition–fragmentation chain transfer (RAFT)/xanthates (MADIX)
polymerization. J. Polym. Sci., Part A: Polym. Chem. 43: 5347-5393.
Peters, E.C., Svec, F., Fréchet, J.M.J., Viklund, C. & Irgum, K.
1999. Control of porous properties and surface chemistry in ‘molded’porous
polymer monoliths prepared by polymerization in the presence of TEMPO. Macromolecules 32: 6377-6379.
Philip, C.M. & Mathew, B. 2008. Design of EGDMA-crosslinked
theophylline imprinted polymer with high specificity and selectivity. J.
Macromol. Sci. A 45: 335-343.
Piletsky, S.A., Parhometz, Y.P., Lavryk, N.V., Panasyuk, T.L.
& Elskaya, A.V. 1994. Sensors for low-weight organic-molecules based on
molecular imprinting technique. Sens. Actuators B 19: 629-631.
Ramström,
O. & Ansell, R.J. 1998.Molecular imprinting technology: Challenges and
prospects for the future. Chirality 10: 195-209.
Skinner,
J. 2002. Atom-transfer radical polymerisation of crosslinked networks. MSci
Thesis. University of Strathclyde, Glasgow, Scotland (unpublished).
Southard,
G.E., Van Houten, K.A., Ott. Jr. E. & Murray, G.M. 2007. Luminescent
sensing of organophosphates using imprinted polymers prepared by RAFT
polymerization. Anal. Chim. Acta 581: 202-207.
Theodoridis,
G. & Manesiotis, P. 2002. Selective solid-phase extraction sorbent for
caffeine made by molecular imprinting. J. Chromatogr. A. 948: 163-169.
Thoelen,
R., Velt, R.V., Duchateau, J., Horemans, F., Haen, J.D., Lutsen, L.,
Vanderzande, D., Ameloot, M., Ven, M.V., Cleij, T.J. & Wagner, P. 2008. A
MIP-based impedimetric sensor for the detection of low-MW molecules. Biosens.
Bioelectron. 23: 913-918.
Titirici,
M.M. & Sellergren, B. 2006. Thin molecularly imprinted polymer films via
reversible addition-fragmentation chain transfer polymerization. Chem.
Mater.18: 1773-1779.
Vana,
P., Davis, T.P. & Barner-Kowollik, C. 2002. Kinetic analysis of reversible
addition fragmentation chain transfer (RAFT) polymerizations: Conditions for
inhibition, retardation and optimum living polymerization. Macromol. Theory
Simul. 11: 823-835.
Viklund,
C., Nordström, A., Irgum, K., Svec, F. & Fréchet, J.M.J. 2001. Preparation
of porous poly(styrene-co-divinylbenzene) monoliths with controlled pore
size distributions initiated by stable free radicals and their pore surface
functionalization by grafting. Macromolecules 34: 4361-4369.
Ye,
L., Weiss, R. & Mosbach, K. 2000. Synthesis and characterization of
molecularly imprinted microspheres. Macromolecules 33: 8239-8245.
Yoshimi,
Y., Ohdaira, R., Iiyama, C. & Sakai, K. 2001. Gate effect of thin layer of
molecularly-imprinted poly(methacrylic acid-co-ethyleneglycol dimethacrylate). Sens.
Actuators B. 73: 49-53.
*Corresponding
author; email: Peter.Cormack@strath.ac.uk