Sains Malaysiana 43(4)(2014):
521–528
Bioconcentration and Translocation Efficiency of Metals in
Paddy (Oryza sativa):
A Case Study from Alor Setar, Kedah,
Malaysia
(Biopemekatan dan Kecekapan
Translokasi Unsur Logam dalam Padi (Oryza sativa):
Suatu Kajian Kes dari Alor
Setar, Kedah, Malaysia)
LOOI LEY JUEN, AHMAD ZAHARIN ARIS*, LIM WAN YING & HAZZEMAN HARIS
Environmental Forensics Research Centre, Universiti
Putra Malaysia
43400 UPM Serdang, Selangor, Malaysia
Received: 13 December 2012/Accepted: 15
July 2013
ABSTRACT
This study aimed to measure and compares
the concentration of metals accumulated in various parts (grains,
stems and roots) of paddy (Oryza sativa). Thirty samples were
collected from selected paddy field in Alor Setar, Kedah, Malaysia.
Metals (75As,
9Be,
114Cd,
59Co,
52Cr
and 208Pb) concentration in various parts
of the paddy and soil were analysed by using the sensitive Inductively
Coupled Plasma-Mass Spectrometry (ICP-MS). Bioconcentration factor
(BCF) and translocation ratio were
calculated based on the concentration of metals obtained. The mean
concentration (mg/kg) of metals in grain samples were 0.06±0.12
for 75As, 0.0038±0.0037 for 9Be, 0.01±0.01 for 114Cd,
0.14±0.19 for 59Co
and 0.21±0.15 for 208Pb while 52Cr
concentration in all samples were below the ICP-MS
detection limit. From the calculated translocation
ratio, absorption of paddy plant had relation: root > stem >>
grain. This study showed that measured concentration of metals in
grain samples were all below the maximum permitted proportion (mg/kg)
of Fourteenth Schedule (Regulation 38) of the Malaysian Food Regulation
1985.
Keywords: Bioconcentration factor (BCF); metals; paddy (Oryza sativa);
translocation ratio
ABSTRAK
Kajian ini
bertujuan untuk mengukur dan membandingkan kepekatan unsur logam
yang terkumpul di dalam pelbagai bahagian (bijian, batang dan akar)
padi (Oryza sativa). Tiga puluh sampel telah dikumpulkan dari sawah padi yang terpilih
di Alor Setar, Kedah, Malaysia. Kepekatan
unsur logam (75As,
9Be,
114Cd,
59Co,
52Cr
and 208Pb) dalam
pelbagai bahagian padi dan tanah telah ditentukan dengan menggunakan
peralatan sensitif Spektrometri Jisim-Plasma Gandingan Induktif
(ICP-MS). Faktor
biopemekatan (BCF) dan nisbah translokasi
telah dikira berdasarkan kepekatan logam yang diperoleh.
Purata kepekatan (mg/kg) unsur logam dalam sampel bijian adalah
0.06±0.12 untuk 75As, 0.0038±0.0037 untuk 9Be, 0.01±0.01
untuk 114Cd,
0.14±0.19 untuk 59Co dan 0.21±0.15 untuk 208Pb manakala 52Cr
kepekatan dalam semua sampel adalah di bawah had pengesanan ICP-MS.
Daripada nisbah translokasi yang dikira, hubungan penyerapan padi:
akar > batang >> bijian. Kajian ini
menunjukkan bahawa kepekatan unsur logam dalam sampel padi yang
diukur adalah di bawah nisbah maksimum yang dibenarkan (mg/kg) oleh
Jadual Keempat Belas (Peraturan 38) Peraturan-Peraturan Makanan
Malaysia 1985.
Kata
kunci: Faktor biopemekatan (BCF);
nisbah translokasi; padi (Oryza sativa); unsur logam
REFERENCES
Coen,
N., Mothersill, C., Kadhim, M. & Wright, E.G. 2001. Heavy metals of
relevance to human health induce genomic instability. The Journal of
Pathology 195(3): 293-299.
Fu,
J., Zhou, Q., Liu, J., Liu, W., Wang, T., Zhang, Q. & Jiang, G. 2008. High
levels of heavy metals in rice (Oryza sativa L.) from a typical
E-waste recycling area in southeast China and its potential risk to human
health. Chemosphere 71(7): 1269-1275.
Hossain, M. & Narciso,
J. 2004. Long-term Prospects for the Global
Rice Economy. Retrieved from Food and Agriculture
Organization of the United Nations website: http:// www. fao.org/rice2004/en/pdf/
hossain.pdf. Accessed on 26 August 2010.
Khairiah,
J., Habibah, H.J., Anizan, I., Maimon, A., Aminah, A. & Ismail, B.S. 2009. Content of heavy metals
in soil collected from selected paddy cultivation areas in Kedah and Perlis,
Malaysia. Journal of Applied Science Research 5(12): 2179-2188.
Kuchiba, M. &
Tsubouchi, Y. 1951. The North Kedah Plain. Economic Geography 27(4):
287-288 & 295.
Liu, W.J., Zhu, Y.G.,
Hu, Y., Williams, P.N., Gault, A.G., Meherg, A.A., Charnock, J.M. & Smith,
F.A. 2006. Arsenic sequestration in iron plaque, its accumulation and
speciation in mature rice plants (Oryza sativa L.). Environmental
Science & Technology 40(18): 5730-5736.
Liu,
W.X., Liu, J.W., Wu, M.Z., Li, Y., Zhao, Y. & Li, S.R. 2009. Accumulation
and translocation of toxic heavy metals in winter wheat (Triticum aestivum L.) growing in agricultural
soil of Zhengzhou, China. Bulletin Environmental Contamination and
Toxicology 82(3): 343-347.
Malaysia
Food Act. 1983 and Malaysia Food Regulation 1985. Warta Kerajaan Malaysia Vol. 29. Kuala Lumpur:
Ministry of Health Malaysia.
Nawaz,
A., Khueshid, K., Arif, M.S. & Ranjha. 2006. Accumulation of heavy metals in soil
and rice plant (Oryza sativa L.) irrigated with industrial effluents. International
Journal of Agriculture and Biology 8(3): 391-393.
Praveena, S.M. &
Aris, A.Z. 2012. A baseline study of tropical coastal water
quality in Port Dickson, Straits of Malacca, Malaysia. Marine Pollution Bulletin. doi:
10.1016/j. marpolbul.2012.11.037.
Rahman, M.M., Owens, G.
& Naidu, R. 2009. Arsenic levels in rice grain and assessment of daily
dietary intake of arsenic from rice in arsenic-contaminated regions of Bangladesh-implications
to groundwater irrigation. Environmental Geochemistry and Health 31(1):
179-187.
Rauf,
M.A., Hakim, M.A., Hanafi, M.M., Islam, M.M., Rahman, G.K.M.M. & Panaullah,
G.M. 2011. Bioaccumulation of arsenic (As) and phosphorous by transplanting Aman rice in
arsenic-contaminated clay soils. Australian Journal of Crop Science 5(12):
1678-1684.
Sanagi, M.M., Ling,
S.L., Nasir, Z., Hermawan, D., Ibrahim, W.A. & Abu Naim, A. 2009. Comparison of signal-to-noise, blank determination, and linear
regression methods for the estimation of detection and quantification limits
for volatile organic compounds by gas chromatography. Journal of AOAC
International 92(6): 1833-1838.
Sharma,
R.K., Agrawal, M. & Marshall, F. 2007. Heavy metal
contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicology and Environmental Safety 66(2): 258-266.
Singh,
S., Sinha, S., Saxena, R., Pandey, K. & Bhatt, K. 2004. Translocation of metals
and its effects in the tomato plants grown on various amendments of tannery
waste: Evidence for involvement of antioxidants. Chemosphere 57(2):
91-99.
Stolt,
J.P., Sneller, F.E.C., Bryngelsson, T., Lunborh, T. & Schat, H. 2003. Phytochelation
and cadmium accumulation in wheat. Environmental and
Experimental Botany 49(1): 21-28.
USEPA. 1996. Method 3050B
Acid Digestion of Soils, Sludges, and Soil. Retrived
from http://www.epa.gov/osw/ hazard/testmethods/se846/pdfs/3050b.pdf.
Accessed on 3 September 2010.
Yang,
Q.W., Shu, W.S., Qiu, J.W., Wang, H.B. & Lan, C.Y. 2004. Lead in paddy soils and rice plants and
its potential health risk around Lechang Lead/Zinc Mine, Guangdong,China. Environment International 30(7): 883-889.
Yap, D.W., Adezrian, J., Khairiah, J.,
Ismail, B.S. & Ahmad- Mahir, R. 2009. The uptake of heavy metals by paddy
plants (Oryza sativa) in Kota Marudu, Sabah, Malaysia. American-
Eurasian Journal of Agricultural & Environmental Sciences 6(1): 16-19.
Zarcinas, B.A., Ishak, C.F., McLaughlin,
M.J. & Cozens, G. 2004. Heavy metals in soils and crops
in Southeast Asia. 1. Peninsular Malaysia. Environmental Geochemistry
and Health 26(4): 343-357.
Zazoli, M.A.,
Bazerafshan, E., Hazrati, A. & Tavakkoli, A. 2006. Determination and
estimation of Cadmium intake from Tarom rice. Journal of
Applied Sciences & Environmental Management 10(3): 147-150.
Zhao, K., Zhang, W., Zhou, L., Liu, X.,
Xu, J. & Huang, P. 2009. Modeling transfer of heavy metals in soil-rice
system and their risk assessment in paddy fields. Environmental Earth
Sciences 59(3): 519-527.
Zwicker, R., Promsawad, A., Zwicker, B.M.
& Laoharojanaphand, S. 2010. Cadmium content of
commercial and contaminated rice, Oryza sativa, in Thailand and
potential health implications. Bulletin of Environmental
Contamination and Toxicology 84(3): 285-288.
*Corresponding author; email: zaharin@upm.edu.my
|