Sains Malaysiana 43(4)(2014):
567–573
A Hybrid Prognostic Model for Oral Cancer based on
Clinicopathologic
and Genomic Markers
(Model Hibrid untuk Prognosis
Kanser Mulut berdasarkan kepada Penanda Klinikopathologi
dan Genomik)
SIOW-WEE
CHANG12*,
SAMEEM ABDUL
KAREEM1, AMIR
FEISAL MERICAN
ALJUNID MERICAN2& ROSNAH BINTI ZAIN34
1Department
of Artificial Intelligence, Faculty of Computer Science and Information
Technology
University of
Malaya, 50603 Kuala Lumpur, Malaysia
2Bioinformatics
Division, Institute of Biological Science, Faculty of Science, University
of Malaya, 50603 Kuala Lumpur, Malaysia
3Department
of Oral Pathology and Oral Medicine and Periodontology, Faculty
of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
4Oral
Cancer Research and Coordinating Centre (OCRCC), Faculty of Dentistry,
University of Malaya
50603 Kuala
Lumpur, Malaysia
Received: 11
September 2012/Accepted: 22 July 2013
ABSTRACT
There are very few prognostic
studies that combine both clinicopathologic and genomic data. Most of the
studies use only clinicopathologic factors without taking into consideration
the tumour biology and molecular information, while some studies use genomic
markers or microarray information only without the clinicopathologic parameters.
Thus, these studies may not be able to prognoses a patient effectively.
Previous studies have shown that prognosis results are more accurate when using
both clinicopathologic and genomic data. The objectives of this research were
to apply hybrid artificial intelligent techniques in the prognosis of oral
cancer based on the correlation of clinicopathologic and genomic markers and to
prove that the prognosis is better with both markers. The proposed hybrid model
consisting of two stages, where stage one with Relief F-GA feature selection method to find an optimal feature of subset and
stage two with ANFIS classification
to classify either the patients alive or dead after certain years of diagnosis.
The proposed prognostic model was experimented on two groups of oral cancer
dataset collected locally here in Malaysia, Group 1 with clinicopathologic
markers only and Group 2 with both clinicopathologic and genomic markers. The
results proved that the proposed model with optimum features selected is more
accurate with the use of both clinicopathologic and genomic markers and
outperformed the other methods of artificial neural network, support vector
machine and logistic regression. This prognostic model is feasible to aid the
clinicians in the decision support stage and to identify the high risk markers
to better predict the survival rate for each oral cancer patient.
Keywords: ANFIS;
clinicopathologic; genomic; oral cancer prognosis; Relief F-GA
ABSTRAK
Terdapat kurang
kajian yang memaparkan penyelidikan prognostik yang menggabungkan
kedua-dua klinikopatologi dan genomik. Kebanyakan
kajian hanya menggunakan faktor klinikopatologi tanpa mengambil
kira biologi tumor dan maklumat molekul, manakala beberapa kajian
penyelidik yang lain menggunakan penanda genomik atau maklumat mikroarai
sahaja tanpa menggunakan parameter klinikopatologi. Maka,
kajian ini tidak dapat membuat prognosis pesakit dengan berkesan.
Kajian terdahulu telah menunjukkan bahawa keputusan
prognosis adalah lebih tepat dengan menggunakan kedua-dua klinikopatologi
dan genomik. Tujuan utama kajian ini adalah untuk mengaplikasikan hibrid teknik
kepintaran buatan dalam prognosis kanser mulut berdasarkan kepada
korelasi penanda klinikopatologi dan genomik dan untuk membuktikan
bahawa prognosis adalah lebih baik dengan kedua-dua penanda.
Model hibrid yang dicadangkan terdiri daripada dua peringkat, dengan
peringkat pertama terdiri daripada ReliefF-GA sebagai
kaedah pemilihan untuk mencari ciri optimum subset dan peringkat
dua dengan pengelasan ANFIS untuk mengelaskan
sama ada pesakit hidup atau mati selepas
beberapa tahun didiagnosis. Model ramalan prognostik yang dicadangkan
telah diaplikasikan ke atas dua golongan dataset kanser mulut yang
dikumpulkan di Malaysia, iaitu Kumpulan 1 dengan penanda klinikopatologi
sahaja dan Kumpulan 2 dengan gabungan kedua-dua penanda klinikopatologi
dan genomik. Keputusan yang didapati telah membuktikan bahawa model
yang dicadangkan dengan ciri optimum yang dipilih adalah lebih tepat
dengan kehadiran kedua-dua penanda klinikopatologi dan genomik dan
mengatasi kaedah lain seperti rangkaian
saraf buatan, mesin sokongan vektor dan regresi logistik. Model
prognostik ini boleh dilaksanakan untuk memberi bantuan kepada pakar
klinikal di peringkat membuat sokongan keputusan untuk mengenal
pasti penanda risiko yang tinggi supaya dapat meramalkan kadar
jangka hayat setiap pesakit kanser dengan lebih tepat.
Kata
kunci: ANFIS; genomik;
klinikopatologi; prognosis kanser mulut; Relief F-GA
REFERENCES
Asakage, T.,
Yokose, T., Mukai, K., Tsugane, S., Tsubono, Y., Asai, M. & Ebihara, S.
1998. Tumor thickness predicts cervical metastasis in patients with stage I/II
carcinoma of the tongue. Cancer 82: 1443-1448.
Catto,
J.W.F., Abbod, M.F., Linkens, D.A. & Hamdy, F.C. 2006. Neuro-Fuzzy
modeling: An accurate and interpretable method for predicting bladder cancer
progression. The Journal of Urology 175: 474-479.
Dom, R.M., Abdul-Kareem, S., Abidin, B., Jallaludin, R.L.R.,
Cheong, S.C. & Zain, R.B. 2008. Oral cancer
prediction model for Malaysian sample. Austral-Asian Journal of
Cancer 7(4): 209-214.
Futschik,
M.E., Sullivan, M., Reeve, A. & Kasabov, N. 2003. Prediction
of clinical behaviour and treatment for cancers. Applied
Bioinformatics 2(3 Suppl): S53-S58.
Gevaert, O., Smet,
F.D., Timmerman, D., Moreau, D. & Moor, B.D. 2006. Predicting the prognosis of breast
cancer by integrating clinical and microarray data with Bayesian networks. Bioinformatics 22(14): e184-e190.
Giacomarra, V.,
Tirelli, G., Papanikolla, L. & Bussani, R. 1999. Predictive factors of nodal metastases
in oral cavity and oropharynx carcinomas. Laryngoscope 109: 795-799.
Jefferies, S. & Foulkes, W.D. 2001. Genetic mechanisms in squamous cell carcinoma of the head and neck. Oral Oncology 37: 115-126.
Kawazu, T., Kazuyuki, A., Yoshiura, K.,
Nakayama, E. & Kanda, S. 2003. Application of neural networks
to the prediction of lymph node metastasis in oral cancer. Oral
Radiology 2003(19): 137-142.
Kononenko, I. 1994. Estimating
Attributes: Analysis and Extension of RELIEF. Paper read at ECML-94
Proceedings of the European conference on machine learning on Machine Learning.
Leite, I.C.G. & Koifman, S. 1998. Survival analysis in a sample of oral cancer patients at a
reference hospital in Rio de Janeiro, Brazil. Oral Oncology 34(5):
347-352.
Li, H., Li, D., Zhang, C. & Nie, S.
2007. An application of machine learning in the criterion
updating of diagnosis cancer. International Conference in Neural
Networks and Brain 2005(1): 187-190.
Mehrotra, R. & Yadav, S. 2006. Oral
squamous cell carcinoma: Etiology, pathogenesis and prognostic value of genomic
alterations. Indian Journal of Cancer 43(2): 60-66.
Morton, R.P., Ferguson,
C.M., Lambie, N.K. & Whitlock, R.M. 1994. Tumor thickness in
early tongue cancer. Archives of Otolaryngology-Head & Neck
Surgery 120: 717-720.
Muzio, L.L., Santarelli,
A., Caltabiano, R., Rubini, C., Pieramici, T. & Trevisiol, L. 2005. p63 overexpression
associates with poor prognosis in head and neck squamous cell carcinoma. Human
Pathology 36: 187-194.
Oliveira, L.R., Ribeiro-Silve, A., Costa,
J.P.O., Simoes, A.L., Di Matteo, M.A.S. & Zucoloto, S. 2008. Prognostic factors and survival analysis in a sample of oral
squamous cell carcinoma patients. Oral Surgery, Oral Medicine, Oral
Pathology, Oral Radiology, and Endodontology 106(5): 685-695.
Reichart, P.A. 2001. Identification of
risk groups for oral precancer and cancer and preventive measures. Clinical
Oral Investigations 5: 207-213.
Seker, H., Odetayo, M.O., Petrovic, D.
& Naguib, R.N.G. 2003. A fuzzy logic based-method for
prognostic decision making in breast and prostate cancers. IEEE
Transactions on Information Technology in Biomedicine 7(2): 114-122.
Siow-Wee, C., Kareem,
S.A., Kallarakkal, T.G., Merican, A.F., Abraham, M.T. & Zain, R.B. 2011. Feature selection methods for optimizing
clinicopathologic input variables in oral cancer prognosis. Asia Pacific
Journal of Cancer Prevention 12(10): 2659-2664.
Sun, Y., Goodison, S.,
Li, J., Liu, L. & Farmerie, W. 2007. Improved breast cancer prognosis through the combination of
clinical and genetic markers. Bioinformatics 23(1): 30-37.
Thurfjell, N., Coates, P.J., Boldrup, L.,
Lindgren, B., Bäcklund, B., Uusitalo, T., Mahani, D., Dabelsteen, E.,
Dahlqvist, Å., Sjöström, B., Roos, G., Vojtesek, B., Nenutil, R. &
Nylander, K. 2005. Function and importance of p63 in
normal oral mucosa and squamous cell carcinoma of the head and neck. Current Research in Head and Neck Cancer. Molecular Pathways, Novel Therapeutic Targets, and Prognostic Factors, edited
by Bier, H. Adv. Otorhinolaryngol. Basel, Karger 62: 49-57.
Walker, D.M., Boey, G.
& McDonald, L.A. 2003. The pathology of oral cancer. Pathology 35(5):
376-383.
Williams, J.K., Carlson, G.W., Cohen, C.,
Derose, P.B., Hunter, S. & Jurkiewicz, M.J. 1994. Tumor angiogenesis as a
prognostic factor in oral cavity tumors. The American Journal of Surgery 168:
373-380.
Zain, R.B. & Ghazali, N. 2001. A review of epidemiological studies of oral cancer and precancer in
Malaysia. Annals of Dentistry University of Malaya 8: 50-56.
*Corresponding author; email: siowwee@um.edu.my
|