Sains Malaysiana 43(4)(2014): 575–582

 

Analisis Terma dan Prestasi Tetingkap Dwi Kaca dengan Modul Fotovoltan Semi-lutsinar

(Thermal Analysis and Performance of Double Glazing Window with Semi-transparent

Photovoltaic Module)

 

MOHD YUSOF HJ OTHMAN*, SALEEM H. ZAIDI, KAMARUZZAMAN SOPIAN

& MARHAMA JELITA

Institut Penyelidikan Tenaga Suria, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor

Malaysia

 

Received: 13 February 2012/Accepted: 5 August 2013

 

ABSTRAK

Analisis terma dan prestasi modul fotovoltan semi-lutsinar yang dipasang pada tetingkap dwi kaca (TDK) telah dikaji. Di dalam TDK terjadi pemindahan haba olakan yang disebabkan oleh perbezaan suhu. Perisian COMSOL digunakan untuk menyelesaikan model matematik dengan empat jenis gas yang berlainan disimulasikan untuk mengisi ruang dalam TDK iaitu udara, argon, kripton dan xenon. Ruang dalam TDK diubah antara 5 hingga 100 mm. Keadaan cuaca di Kuala Lumpur, Malaysia telah digunakan. Modul fotovoltan yang digunakan untuk kajian simulasi ialah jenis silikon amorfus (Si-a). Kajian ini mendapati penggunaan gas xenon dalam ruang TDK memberikan prestasi maksimum dalam mengurangkan beban penyejukan. Ketebalan optimum ruang TDK bergantung kepada jenis gas yang digunakan dan secara umumnya berada dalam julat 10 hingga 20 mm.

 

Kata kunci: Analisis terma; modul semi lutsinar; pemindahan haba perolakan; prestasi sistem; tingkap dwi kaca

 

ABSTRACT

Thermal analysis and performance of a semi-transparent photovoltaic module installed with a double glazing window (TDK) has been studied. The convective heat transfer occurs because of the temperature differences. The software COMSOL was used to solve the mathematical model and four different gases namely air, argon krypton and xenon were used. The gap's thickness varies from 5 to 100 mm. The climate conditions in Kuala Lumpur, Malaysia was used. The photovoltaic module used for the simulation studies are of the amorphous type (Si-a). It was concluded that the use of xenon for filling up the gaps of the windows gave maximum benefits for reducing cooling load. The optimal gap thickness obtained were between 10 and 20 mm.

 

Keywords: Convective heat transfer; double glazing window; semi-transparent module; system performance; thermal analysis

REFERENCES

Ayd?n, O. 2000. Determination of optimum air-layer thickness in double-pane windows. Energy and Buildings 32: 303-308.

Ayd?n, O. 2006. Conjugate heat transfer analysis of double pane windows. Building and Environment 41: 109-116.

Brandemuehl, M.J. & Beckman, W.A. 1980. Transmission of diffuse radiation through CPC and flat plate collector glazings. Solar Energy 24: 511-513.

Brinkworth, B.J., Cross, B.M., Marshall, R.H. & Yang, H. 1997. Thermal regulation of photovoltaic cladding. Solar Energy 61: 169-178.

COMSOL AB. 2009. COMSOL Multiphysics Handbook. Hatfield, United Kingdom: Publisher

Curcija, D. & Goss, W.P. 1995. New correlations for convective heat transfer coefficient on indoor fenestration surfaces-compilation of more recent work. Proceedings of Thermal Performance of the Exterior Envelopes of Buildings 6: 567-572.

ElSherbiny, S.M., Raithby, G.D. & Hollands, K.G. 1982. Heat transfer by natural convection across vertical and inclined air layers. Journal of Heat Transfer Transactions of the ASME 104: 96-102.

Fung, Y.Y. & Yang, H.X. 2008. Study on thermal performance of semi-transparent building-integrated photovoltaic glazings. Energy and Buildings 40: 341-350.

Han, J., Lu, L. & Yang, H. 2009. Thermal behavior of a novel type see-through glazing system with integrated PV cells. Building and Environment 44: 2129-2136.

Homer. 2012. Optimizing Clean Power Everywhere. http://www. homerenergy.com. Diakses pada 31 Januari 2012.

Kakac, S. & Yener, Y. 1995. Convective Heat Transfer. Florida: CRC Press Inc.

Korpela, S.A., Lee, Y. & Drummond, J.E. 1982. Heat transfer window. Journal of Heat Transfer 104: 539-544.

Lee, Y. & Korpela, S.A. 1983. Multicellular convection in a vertical slot. Journal of Fluid Mechanics 126: 91-121.

Loveday, D.L. & Taki, A.H., 1996. Convective heat transfer coefficients at a plane surface on a full-scale building facade. Internatinal Journal of Heat and Mass Transfer 39: 1729- 1742.

Markvart, T. 2000. Solar Electricity. 2nd ed. New York: John Wiley & Sons.

Muneer, T. & Han, B. 1996. Simplified analysis for free convection in enclosures - application to an industrial problem. Energy Conversion Management 37: 1463-1467.

Myforecast. 2012. Weather for Your World. http://www. myforecast.com. Diakses pada 31 Januari 2012.

Novak, M.H. & Nowak, E.S. 1993. Natural convection heat transfer in slender window cavities. Journal of Heat Transfer 115: 476-479.

Oosthuizen, P.H. & Naylor, D. 1999. An Introduction to Convection Heat Transfer Analysis. Singapore: McGraw– Hill.

The National Institute of Standards and Technology. 2011. Published by the U.S. Secretary of Commerce on behalf of the United States of America. http://webbook.nist.gov. Diakses pada 31 Januari 2012.

Weir, G. & Muneer, T. 1998. Energy and environmental impact analysis of double-glazed windows. Energy Conversion Management 39: 243-256.

World Meteorological Organization. 2012. World Weather Information Service. http://worldweather.wmo.int. Diakses pada 31 Januari 2012.

Yang, H.X., Burnett, J. & Ji, J. 2000. Simple approach to cooling load component calculation through PV walls. Energy and Buildings 31: 285-290.

Yang, H.X., Burnett, J. & You, S. 1997. Photovoltaics applications in Hong Kong buildings. Asia Engineer.

Yin, S.H., Wung, T.Y. & Chen, K. 1978. Natural convection in an air layer enclosed within rectangular cavities. International Journal of Heat and Mass Transfer 21: 307-315.

Zondag, H.A., de Vries, D.W., van Helden, W.G.J., van Zolingen, R.J.C. & van Steenhoven, A.A. 2003. The yield of different combined PV-thermal collector designs. Solar Energy 74: 253-269.

 

 

*Corresponding author; e-mail: myho@ukm.my

 

 

 

 

previous