Sains Malaysiana 43(4)(2014):
575–582
Analisis Terma dan Prestasi Tetingkap Dwi Kaca dengan Modul
Fotovoltan Semi-lutsinar
(Thermal Analysis and
Performance of Double Glazing Window with Semi-transparent
Photovoltaic Module)
MOHD YUSOF HJ OTHMAN*, SALEEM H. ZAIDI, KAMARUZZAMAN SOPIAN
& MARHAMA JELITA
Institut
Penyelidikan Tenaga Suria, Universiti Kebangsaan Malaysia, 43600 Bangi,
Selangor
Malaysia
Received:
13 February 2012/Accepted: 5 August 2013
ABSTRAK
Analisis terma dan prestasi modul fotovoltan
semi-lutsinar yang dipasang pada tetingkap dwi kaca (TDK)
telah dikaji. Di dalam TDK terjadi
pemindahan haba olakan yang disebabkan oleh perbezaan suhu. Perisian COMSOL digunakan untuk
menyelesaikan model matematik dengan empat jenis gas yang berlainan
disimulasikan untuk mengisi ruang dalam TDK iaitu
udara, argon, kripton dan xenon. Ruang dalam TDK diubah antara 5 hingga 100 mm. Keadaan cuaca di Kuala Lumpur,
Malaysia telah digunakan. Modul fotovoltan yang digunakan untuk kajian simulasi
ialah jenis silikon amorfus (Si-a). Kajian ini mendapati penggunaan gas xenon
dalam ruang TDK memberikan prestasi
maksimum dalam mengurangkan beban penyejukan. Ketebalan optimum ruang TDK bergantung kepada jenis gas
yang digunakan dan secara umumnya berada dalam julat 10 hingga 20 mm.
Kata kunci: Analisis terma; modul
semi lutsinar; pemindahan haba perolakan; prestasi sistem; tingkap dwi kaca
ABSTRACT
Thermal analysis and performance of a semi-transparent photovoltaic
module installed with a double glazing window (TDK) has been studied. The
convective heat transfer occurs because of the temperature differences.
The software COMSOL
was used to solve the mathematical model and four
different gases namely air, argon krypton and xenon were used. The
gap's thickness varies from 5 to 100 mm. The climate conditions
in Kuala Lumpur, Malaysia was used. The photovoltaic module
used for the simulation studies are of the amorphous type (Si-a).
It was concluded that the use of xenon for filling up the gaps of
the windows gave maximum benefits for reducing cooling load. The
optimal gap thickness obtained were between
10 and 20 mm.
Keywords: Convective heat transfer; double glazing window; semi-transparent
module; system performance; thermal analysis
REFERENCES
Ayd?n, O. 2000.
Determination of optimum air-layer thickness in double-pane windows. Energy
and Buildings 32: 303-308.
Ayd?n, O. 2006.
Conjugate heat transfer analysis of double pane windows. Building and
Environment 41: 109-116.
Brandemuehl, M.J. &
Beckman, W.A. 1980. Transmission of diffuse radiation through CPC and flat
plate collector glazings. Solar Energy 24: 511-513.
Brinkworth, B.J., Cross,
B.M., Marshall, R.H. & Yang, H. 1997. Thermal regulation of photovoltaic
cladding. Solar Energy 61: 169-178.
COMSOL AB. 2009.
COMSOL Multiphysics Handbook. Hatfield, United Kingdom: Publisher
Curcija, D. & Goss,
W.P. 1995. New correlations for convective heat transfer coefficient on indoor
fenestration surfaces-compilation of more recent work. Proceedings of
Thermal Performance of the Exterior Envelopes of Buildings 6: 567-572.
ElSherbiny, S.M.,
Raithby, G.D. & Hollands, K.G. 1982. Heat transfer by natural convection
across vertical and inclined air layers. Journal of Heat Transfer
Transactions of the ASME 104: 96-102.
Fung, Y.Y. & Yang,
H.X. 2008. Study on thermal performance of semi-transparent building-integrated
photovoltaic glazings. Energy and Buildings 40: 341-350.
Han, J., Lu, L. &
Yang, H. 2009. Thermal behavior of a novel type see-through glazing system with
integrated PV cells. Building and Environment 44: 2129-2136.
Homer. 2012. Optimizing
Clean Power Everywhere. http://www. homerenergy.com. Diakses pada 31
Januari 2012.
Kakac, S. & Yener,
Y. 1995. Convective Heat Transfer. Florida: CRC Press Inc.
Korpela, S.A., Lee, Y.
& Drummond, J.E. 1982. Heat transfer window. Journal of Heat Transfer 104:
539-544.
Lee, Y. & Korpela,
S.A. 1983. Multicellular convection in a vertical slot. Journal of Fluid
Mechanics 126: 91-121.
Loveday, D.L. &
Taki, A.H., 1996. Convective heat transfer coefficients at a plane surface on a
full-scale building facade. Internatinal Journal of Heat and Mass Transfer 39:
1729- 1742.
Markvart, T. 2000. Solar
Electricity. 2nd ed. New York: John Wiley & Sons.
Muneer, T. & Han, B.
1996. Simplified analysis for free convection in enclosures - application to an
industrial problem. Energy Conversion Management 37: 1463-1467.
Myforecast. 2012. Weather
for Your World. http://www. myforecast.com. Diakses pada 31 Januari 2012.
Novak, M.H. & Nowak,
E.S. 1993. Natural convection heat transfer in slender window cavities. Journal
of Heat Transfer 115: 476-479.
Oosthuizen, P.H. &
Naylor, D. 1999. An Introduction to Convection Heat Transfer Analysis.
Singapore: McGraw– Hill.
The National Institute
of Standards and Technology. 2011. Published by the U.S. Secretary of Commerce on behalf of the United States of
America. http://webbook.nist.gov. Diakses pada 31 Januari 2012.
Weir, G. & Muneer,
T. 1998. Energy and environmental impact analysis of double-glazed windows. Energy
Conversion Management 39: 243-256.
World Meteorological
Organization. 2012. World Weather Information Service.
http://worldweather.wmo.int. Diakses pada 31 Januari 2012.
Yang, H.X., Burnett, J.
& Ji, J. 2000. Simple approach to cooling load component calculation
through PV walls. Energy and Buildings 31: 285-290.
Yang, H.X., Burnett, J.
& You, S. 1997. Photovoltaics applications in Hong Kong buildings. Asia
Engineer.
Yin, S.H., Wung, T.Y.
& Chen, K. 1978. Natural convection in an air layer enclosed within
rectangular cavities. International Journal of Heat and Mass Transfer 21:
307-315.
Zondag, H.A., de Vries,
D.W., van Helden, W.G.J., van Zolingen, R.J.C. & van Steenhoven, A.A. 2003.
The yield of different combined PV-thermal collector designs. Solar Energy 74:
253-269.
*Corresponding author;
e-mail: myho@ukm.my
|