Sains Malaysiana 44(1)(2015): 115–120

 

A Simple and Effective Isocratic HPLC Method for Fast Identification and

Quantification of Surfactin

(Kaedah Isokratik HPLC Ringkas dan Berkesan bagi Pengenalpastian dan

Kuantifikasi Surfaktin dengan Cepat)

 

MUHAMMAD QADRI EFFENDY MUBARAK1, ABDUL RAHMAN HASSAN1, AIDIL ABDUL HAMID2, SAHAID KHALIL3 & MOHD HAFEZ MOHD ISA1*

 

1Faculty of Science and Technology, Universiti Sains Islam Malaysia, Bandar Baru Nilai,

71800 Nilai, Negeri Sembilan, Malaysia

 

2School of Bioscience and Biotechnology, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia

 

3Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia

43600 Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 12 December 2013/Accepted: 10 June 2014

 

ABSTRACT

 

The aim of this study was to establish a simple, accurate and reproducible method for the identification and quantification of surfactin using high-performance liquid chromatography (HPLC). Previously reported method of identification and quantification of surfactin were time consuming and requires a large quantity of mobile phase. The new method was achieved by application of Chromolith® high performance RP-18 (100 × 4.6 mm, 5 μm) as the stationary phase and optimization of mobile phase ratio and flow rate. Mobile phase consisted of acetonitrile (ACN) and 3.8 mM trifluroacetic acid (TFA) solution of 80:20 ratio at flow rate of 2.2 mL/min was obtained as the optimal conditions. Total elution time of the obtained surfactin peaks was four times quicker than various methods previously reported in the literature. The method described here allowed for fine separation of surfactin in standard sample (98% purity) and surfactin in fermentation broth.

 

Keywords: High-performance liquid chromatography (HPLC); isocratic; mobile phase; stationary phase; surfactin

 

 

ABSTRAK

Tujuan kajian ini adalah untuk menyediakan satu kaedah yang mudah, tepat dan boleh diulang untuk mengenal pasti dan mengkuantifikasi surfaktin menggunakan kromatografi cecair berprestasi tinggi (HPLC). Sebelum ini dilaporkan kaedah kenal pasti dan kuantifikasi surfaktin memerlukan masa yang panjang dan amaun fasa bergerak yang banyak. Kaedah baru telah diperoleh dengan menggunakan kolum Chromolith® high performance RP-18 (100 × 4.6 mm, 5 μm) sebagai fasa pegun dan pengoptimuman nisbah dan kadar aliran fasa bergerak. Fasa bergerak terdiri daripada cecair asetonitril (ACN) dan 3.8 mM asid trifluroacetic (TFA) dengan nisbah 80:20 pada kadar aliran 2.2 mL/min sebagai kadar optimum. Masa analisis yang diperoleh adalah empat kali lebih pantas daripada kaedah yang dilaporkan sebelum ini. Kaedah yang diguna pakai di sini dapat memisahkan piawai surfaktin (98% ketulenan) dan surfaktin dalam sampel fermentasi dengan baik.

 

Kata kunci: Fasa bergerak; fasa pegun; isokratik; kromatografi cecair prestasi tinggi (HPLC); surfaktin

 

REFERENCES

Al-Araji, L., Rahman, R.N.Z.R.A., Basri, M. & Salleh, A.B. 2007. Microbial surfactant. Asia Pacific Journal of Molecular Biology and Biotechnology 15: 99-105.

Banat, I.M., Makkar, R.S. & Cameotra, S.S. 2000. Potential commercial applications of microbial surfactants. Applied Microbiology and Biotechnology 53: 495-508.

Chen, C.Y., Bake, S.C. & Darton, R.C. 2007. The application of a high throughput analysis method for the screening of potential biosurfactant from natural sources. Journal of Microbiological Methods 70: 503-510.

Cooper, D.G., Macdonald, C.R., Duff, S.J.B. & Kosaric, N. 1981. Enhance production of surfactin from Bacillus Subtilis by continuous product removal and metal cation additions. Journal of Applied and Environmental Microbiology 42: 408-412.

Davies, D.A., Lynch, H.C. & Varley, J. 2001. The application of foaming for the recovery of surfactin from B. subtilis ATCC 21332 cultures. Enzyme and Microbial Technology 28: 346- 354.

Fernandes, P.A.V., de Aruda, I.R., dos Santos, A.F.A.B., de Araujo, A.A., Maiour, A.M.S. & Ximenes, E.A. 2007. Antimicrobial activity of surfactants produced by Bacillus subtilis R14 against multidrug bacteria. Brazilian Journal of Microbiology 38: 704-709.

Fonseca, R.R., Silva, A.J.R., De Franca, F.P., Cardoso, V.L. & Servulo, E.F.C. 2007. Optimzing carbon/nitrogen ratio for biosurfactant production by a Bacillus subtilis strain. Applied Biochemistry and Biotechnology 471: 137-140.

Georgiou, G., Lin, S.C. & Sharma, M.M. 1992. Surface-active compounds from microorganisms. Biotechnology 10: 60-65.

Heinemann, C., Hylckama, V., van Johan, E.T., Janssen, D.B., Busscher, H.J., van der Mei, H.C. & Reid, G. 2000. Purification and characterization of a surface-binding protein from Lactobacillus fermentum RC-14 that inhibits adhesion of Enterococcus faecalis 1131. FEMS Microbiology Letters 190: 177-180.

Hosono, K. & Suzuki, H. 1983. Acylpeptides, the inhibitors of cyclic adenosine 3′,5′ monophosphate phosphodiesterase I. Purification, physicochemical properties and structures of fatty acid residues. Journal of Antibiotics 36: 667-673.

Hsieh, F.C., Li, M.C., Lin, R.C. & Kao, S.S. 2004. Rapid detection and characterization of surfactin-producing Bacillus subtilis and closely related species based on PCR. Current Microbiology 49: 186-191.

Isa, M.H.M., Coraglia, D.E., Frazier, R.A. & Jauregi, P. 2007. Recovery and purification of from fermentation broth by a two-step ultrafiltration process. Journal of Membrane Science 296: 51-57.

Joshi, S., Bharucha, C. & Desai, A.J. 2008. Production of biosurfactant and antifungal compound by fermented food isolate Bacillus subtilis 20B. Bioresource Technology 99: 4603-4608.

Li, D., Martini, N., Wu, Z. & Wen, J. 2012. Development of an isocratic HPLC method for catechin quantification and its application to formulation studies. Fitoterapia 83: 1267-1274.

Lin, S.C., Chen, Y.C. & Lin, Y.M. 1998. Genereal approach for the development of high-performance liquid chromatography methods for biosurfactant analysis and purification. Journal of Chromatogram A. 825: 149-159.

Mulligan, C.N. 2005. Environmental applications for biosurfactants. Environment and Pollution 133: 183-198.

Oka, K., Hirano, T., Homma, M., Ishii, H., Murakami, K., Mogami, S., Motizuki, A., Morita, H., Takeya, K. & Itokawa, H. 1993. Satisfactory separatin and MS-MS spectrometry of six surfactin isolated from Bacillus subtilis natto. Chemical and Pharmaceutical Bulletin 41: 1000-1002.

Peypoux, F., Bonmatin, J.M., Labb, H., Das, B.C., Ptak, M. & Michel, G. 1991. Isolation and characterization of a new variant of surfactin, the [Val7] surfactin. European Journal of Biochemistry 202: 101-106.

Pursell, M.R., Mendes-Tatsis, M.A. & Stuckey, D.C. 2004. Effect of fermentation broth and biosurfactants on mass transfer during liquid-liquid extraction. Biotechnology and Bioengineering 85: 155-165.

Singh, P. & Cameotra, S.S. 2004. Potential applications of microbial surfactants in biomedical sciences. Trends in Biotechnology 22: 142-146.

Wei, Y.H. & Chi, M. 2002. Mn2+ improves surfactin production by Bacillus subtilis. Journal of Biotechnology Letters 24: 479-482.

Wei, Y.H., Lai, C.C. & Chang, J.S. 2007. Using Taguchi experimental design methods to optimize trace element composition for enhanced surfactin production by Bacillus subtilis ATCC 21332. Process Biochemistry 42: 40-45.

 

 

*Corresponding author; email: m.hafez@usim.edu.my

 

 

previous