Sains Malaysiana 44(1)(2015): 107–113
Interpretation of Upper-Storey Canopy Area in Subtropical
Broadleaved Forests in Okinawa Island Using Laser Scanning Data
(Interpretasi
Ruang Kanopi Lapisan Atas Hutan
Subtropika Berdaun
Lebar di Pulau Okinawa Menggunakan Data
Imbasan Laser)
NOOR JANATUN NAIM BINTI JEMALI1,3*, MASAMI SHIBA2 & AZITA AHMAD ZAWAWI1
Kagoshima
University, Faculty of Agriculture, University of the Ryukyus,
Senbaru-1,
Nishihara
903-0216 Japan
2Faculty of
Agriculture, University of the Ryukyus, Senbaru-1,
Nishihara 903-0213,
Okinawa, Japan
3Faculty of
Earth Sciences, Universiti Malaysia Kelantan, Locked
bag No.100, 17600 Jeli, Kelantan
Malaysia
Received: 21
October 2013/Accepted: 30 July 2014
ABSTRACT
Conventional forest inventory practice
took huge of effort, and is time- and cost- consuming. With the
aid of remote sensing technology by light detection and ranging
(LiDAR),
those unbearable factors could be minimized. LiDAR
is able to capture forest characteristic information
and is well known for estimating forest structure accurately in
many studies. Forest monitoring related to forest resource inventory
(FRI)
becomes more effective by utilizing LiDAR data
and it is tremendously useful, especially to distinguish information
on density, growth and distribution of trees in a selected area.
In this study, LiDAR data was utilized aimed to
delineate crown cover and estimate upper-storey canopy area in Yambaru Forest using object-based segmentation and classification
techniques. Agreement between field survey and LiDAR
data analysis showed that only 33.7% of upper-storey
canopy area was successfully delineated. The low accuracy level
of canopy detection in Yambaru Forest area was expected mainly due to tree structure,
density and topographic condition.
Keywords: Canopy area; LiDAR; Okinawa; subtropical forest;
upper-storey
ABSTRAK
Amalan inventori hutan secara konvensional memerlukan tenaga kerja, masa dan kos yang tinggi.
Dengan
bantuan teknologi penderiaan jarak jauh seperti imej
LiDAR, faktor-faktor
tersebut dapat
diminimumkan. LiDAR
mampu mencerap
maklumat berkenaan
ciri hutan dan
banyak kajian
telah membuktikan teknologi ini dapat
menganggarkan struktur
hutan dengan tepat.
Pemantauan hutan
berhubung inventori sumber hutan (FRI)
menjadi lebih
efektif dengan penggunaan data LiDAR dan ia
sangat bermanfaat terutama bagi membezakan
informasi kepadatan
hutan, pertumbuhan dan taburan pohon
di kawasan terpilih.
Dalam kajian ini, data LiDAR
digunakan untuk
menganggarkan lapisan
atas kanopi pokok
dengan menggunakan
teknik pengelasan dan segmentasi berdasarkan objek. Keputusan
kajian menunjukkan hanya 33.7% ruang kanopi lapisan atas pokok dapat
dikesan hasil
perbandingan antara analisis data LiDAR dengan data daripada tinjauan lapangan. Aras ketepatan yang rendah
dalam mengesan
kanopi di kawasan Hutan Yambaru menggunakan
data LiDAR dijangka
disebabkan oleh faktor-faktor pengaruh seperti struktur pokok, kepadatan dan keadaan
topografi di kawasan
tersebut.
Kata kunci: Hutan subtropikal; keluasan kanopi; lapisan atas; LiDAR;
Okinawa
REFERENCES
Asner, P.G., Palace, M., Keller, M., Pereira, J.R., Silva, J.N.M.
& Zweede, J.C. 2002. Estimating
canopy structure in Amazon forest from laser scanner range finder and IKONOS
satellite observation. Biotropica 34(4):
483-492.
Baatz, M., Benz, U., Dehghani, S., Heynen, M., Holtje, A., Hofmann,
P., Lingenfelder, I., Mimler,
M., Sohlbach, M., Weber, M. & Willhauck,
G. 2001. eCognition User Guide, Definiens Imaging GmbH, Munich. p.
310.
Chen, Q., Baldocchi, D., Gong, P. &
Kelly, M. 2006. Isolating individual trees in savanna woodland using small
footprint lidar data. Photogrammmetric Engineering and Remote Sensing 72(8): 923-932.
Dees, M., Straub, C. & Koch, B. 2012. Can
biodiversity study benefit from information on the vertical structure of
forest? Utility of LiDAR remote sensing. Current
Science 102(8): 1181-1187.
Enoki, T. 2003. Microtopography and distribution of canopy in subtropical
evergreen broad-leaves forest in the northern part of Okinawa Island, Japan. Ecological
Research 18: 103-113.
Fukushi, R., Oguma, H., Yone, Y., Suzuki, K.,
Okano, T. & Fujinuma, Y. 2008. Estimation
of forest resource conditions in Larix kaempferistand combining high resolution digital
aerial photography and DTM by LiDAR data. Journal of the Japan Forest
Society 90(5): 297-305 (In Japanese).
Hyyppa, J., Kelle,
O., Lehikoinen, M. & Inkinen,
M. 2001. A segmentation-based method to retrieve stem volume estimates from
3-dimensional tree height models produced by laser scanner. IEEE
Transactions of Geoscience and Remote Sensing 39: 969-975.
Imai, Y., Setojima, M., Yamagishi, Y.
& Fujiwara, N. 2004. Tree-height measuring
characteristics of urban forests by Lidar data different in resolution. International Society for Photogrammetry and Remote Sensing. Technical Commission VII. Istanbul, Turkey.
http://www.isprs.org/proceedings/ xxxv/congress/comm7/papers/100.pdf.
Ito, Y. 2003.
Rich biota in the forests of Yanbaru,
northern montane part of Okinawa Island Japan, and imminent extinction
crisis of the endangered species. Proceedings
of IUFRO Kanazawa 2003 'Forest Insect Population Dynamics and Host
Influence'. pp. 11-15.
IUCN. 2012.
The IUCN Red List of Threatened Species. Version 2012.2.
http://www/iucnredlist.org. Accessed on 17 October 2012.
Korpela, I. 2004. Individual tree
measurements by means of digital aerial photogrammetry. Silva Fennica Monograph 3: 1-93.
Naesset, E. 2004. Practical
large-scale forest stand inventory using a small-footprint airborne scanning
laser. Scandinavian Journal of Forest Research 12(2): 164-179.
Persson, A.,
Holmgren, J., Sodermann, U. & Olsson, H. 2004. Tree
species classification of individual trees in Sweden by combining high resolution laser data with height resolution near
infrared digital images. International Archives of
Photogrammetry and Remote Sensing. Vol.XXXVI,
Part 8/ W2.4. p. 4.
Pitkanen, J., Maltamo, M., Hyyppa, J. & Yu,
X. 2004. Adaptive methods for individual tree detection on airborne laser
based canopy height model. ISPRS: Laser Scanners for Forest and Landscape
Assessment. Freiburg, Germany. pp. 187-191.
Ryukyu Shimpo. 2013.
http://English.ryukyushimpo.jp. Accessed on 24 February 2013.
Sasse, J. 1998. The Forest of Japan. Japan Forest Technical Association.
Shinohara, T., Florence, R. & Asato,
I. 1996. Some observation on forests and
forestry on the Ryukyuan Islands. Science Bulletin of the Faculty of Agriculture. University of the Ryukyus 43: 31-41.
Shinzato, T., Wu,
L., Nishihata, O., Taba,
K., Enoki, T. & Hirata, E. 2000. Characteristics of sprout natural regeneration of evergreen broad-leaved forest
dominated by Castanopsis sieboldiiin Okinawa: Studies on mortality and decay of
stumps. Science Bulletin of the Faculty of Agriculture. University of the Ryukyus 47: 145-157.
Shinzato, T., Taba, K., Hirata, E. & Yamamori, N. 1986. Regeneration of Castanopsis sieboldiiforest. Studies on stratification and
age structure of a natural stand. Science Bulletin of the
Faculty of Agriculture. University of the Ryukyus 33: 245-256.
Suarez, J., Lucca, M., Gudie, J., Polsson, K., Xenadis, X.,
Gardiner, B. & Perks, M. 2009. An individual canopy delineation
algorithm based on object-oriented segmentation and classification. Silvilaser. 14-16 October. Collage Station Texas,
USA. pp. 220-230.
Wang, L.,
Gong, P. & Biging, G.S. 2004. Individual
tee-crown delineation and tree-top detection in
high-spatial-resolution aerial imagery. Photogrammmetric Engineering and Remote Sensing 70(3): 351-357.
Wu, L., Shinzato, T., Nishihata, O., Taba, K., Enoki, T. & Hirata, E. 2001. Characteristics of sprout natural regeneration of evergreen broad-leaved forest
dominated by Castanopsis sieboldiiin Okinawa: Sprout position and growth. Science Bulletin of the Faculty of Agriculture. University
of the Ryukyus 48: 153-163.
Xu, X., Wang, Q. & Shibata, H. 2008. Forest
structure, productivity and soil properties in a subtropical ever-green broad-leaved forest in Okinawa, Japan. Journal of Forestry Research 19(4):
271-276.
*Corresponding author; email: idiana0303@yahoo.com
|