Sains Malaysiana 44(1)(2015): 107–113

 

Interpretation of Upper-Storey Canopy Area in Subtropical Broadleaved Forests in Okinawa Island Using Laser Scanning Data

(Interpretasi Ruang Kanopi Lapisan Atas Hutan Subtropika Berdaun Lebar di Pulau Okinawa Menggunakan Data Imbasan Laser)

 

NOOR JANATUN NAIM BINTI JEMALI1,3*, MASAMI SHIBA2 & AZITA AHMAD ZAWAWI1

 

Kagoshima University, Faculty of Agriculture, University of the Ryukyus, Senbaru-1,

Nishihara 903-0216 Japan

 

2Faculty of Agriculture, University of the Ryukyus, Senbaru-1, Nishihara 903-0213,

Okinawa, Japan

 

3Faculty of Earth Sciences, Universiti Malaysia Kelantan, Locked bag No.100, 17600 Jeli, Kelantan

Malaysia

 

Received: 21 October 2013/Accepted: 30 July 2014

 

ABSTRACT

Conventional forest inventory practice took huge of effort, and is time- and cost- consuming. With the aid of remote sensing technology by light detection and ranging (LiDAR), those unbearable factors could be minimized. LiDAR is able to capture forest characteristic information and is well known for estimating forest structure accurately in many studies. Forest monitoring related to forest resource inventory (FRI) becomes more effective by utilizing LiDAR data and it is tremendously useful, especially to distinguish information on density, growth and distribution of trees in a selected area. In this study, LiDAR data was utilized aimed to delineate crown cover and estimate upper-storey canopy area in Yambaru Forest using object-based segmentation and classification techniques. Agreement between field survey and LiDAR data analysis showed that only 33.7% of upper-storey canopy area was successfully delineated. The low accuracy level of canopy detection in Yambaru Forest area was expected mainly due to tree structure, density and topographic condition.

 

Keywords: Canopy area; LiDAR; Okinawa; subtropical forest; upper-storey

 

ABSTRAK

Amalan inventori hutan secara konvensional memerlukan tenaga kerja, masa dan kos yang tinggi. Dengan bantuan teknologi penderiaan jarak jauh seperti imej LiDAR, faktor-faktor tersebut dapat diminimumkan. LiDAR mampu mencerap maklumat berkenaan ciri hutan dan banyak kajian telah membuktikan teknologi ini dapat menganggarkan struktur hutan dengan tepat. Pemantauan hutan berhubung inventori sumber hutan (FRI) menjadi lebih efektif dengan penggunaan data LiDAR dan ia sangat bermanfaat terutama bagi membezakan informasi kepadatan hutan, pertumbuhan dan taburan pohon di kawasan terpilih. Dalam kajian ini, data LiDAR digunakan untuk menganggarkan lapisan atas kanopi pokok dengan menggunakan teknik pengelasan dan segmentasi berdasarkan objek. Keputusan kajian menunjukkan hanya 33.7% ruang kanopi lapisan atas pokok dapat dikesan hasil perbandingan antara analisis data LiDAR dengan data daripada tinjauan lapangan. Aras ketepatan yang rendah dalam mengesan kanopi di kawasan Hutan Yambaru menggunakan data LiDAR dijangka disebabkan oleh faktor-faktor pengaruh seperti struktur pokok, kepadatan dan keadaan topografi di kawasan tersebut.

 

Kata kunci: Hutan subtropikal; keluasan kanopi; lapisan atas; LiDAR; Okinawa

REFERENCES

 

Asner, P.G., Palace, M., Keller, M., Pereira, J.R., Silva, J.N.M. & Zweede, J.C. 2002. Estimating canopy structure in Amazon forest from laser scanner range finder and IKONOS satellite observation. Biotropica 34(4): 483-492.

Baatz, M., Benz, U., Dehghani, S., Heynen, M., Holtje, A., Hofmann, P., Lingenfelder, I., Mimler, M., Sohlbach, M., Weber, M. & Willhauck, G. 2001. eCognition User Guide, Definiens Imaging GmbH, Munich. p. 310.

Chen, Q., Baldocchi, D., Gong, P. & Kelly, M. 2006. Isolating individual trees in savanna woodland using small footprint lidar data. Photogrammmetric Engineering and Remote Sensing 72(8): 923-932.

Dees, M., Straub, C. & Koch, B. 2012. Can biodiversity study benefit from information on the vertical structure of forest? Utility of LiDAR remote sensing. Current Science 102(8): 1181-1187.

Enoki, T. 2003. Microtopography and distribution of canopy in subtropical evergreen broad-leaves forest in the northern part of Okinawa Island, Japan. Ecological Research 18: 103-113.

Fukushi, R., Oguma, H., Yone, Y., Suzuki, K., Okano, T. & Fujinuma, Y. 2008. Estimation of forest resource conditions in Larix kaempferistand combining high resolution digital aerial photography and DTM by LiDAR data. Journal of the Japan Forest Society 90(5): 297-305 (In Japanese).

Hyyppa, J., Kelle, O., Lehikoinen, M. & Inkinen, M. 2001. A segmentation-based method to retrieve stem volume estimates from 3-dimensional tree height models produced by laser scanner. IEEE Transactions of Geoscience and Remote Sensing 39: 969-975.

Imai, Y., Setojima, M., Yamagishi, Y. & Fujiwara, N. 2004. Tree-height measuring characteristics of urban forests by Lidar data different in resolution. International Society for Photogrammetry and Remote Sensing. Technical Commission VII. Istanbul, Turkey. http://www.isprs.org/proceedings/ xxxv/congress/comm7/papers/100.pdf.

Ito, Y. 2003. Rich biota in the forests of Yanbaru, northern montane part of Okinawa Island Japan, and imminent extinction crisis of the endangered species. Proceedings of IUFRO Kanazawa 2003 'Forest Insect Population Dynamics and Host Influence'. pp. 11-15.

IUCN. 2012. The IUCN Red List of Threatened Species. Version 2012.2. http://www/iucnredlist.org. Accessed on 17 October 2012.

Korpela, I. 2004. Individual tree measurements by means of digital aerial photogrammetry. Silva Fennica Monograph 3: 1-93.

Naesset, E. 2004. Practical large-scale forest stand inventory using a small-footprint airborne scanning laser. Scandinavian Journal of Forest Research 12(2): 164-179.

Persson, A., Holmgren, J., Sodermann, U. & Olsson, H. 2004. Tree species classification of individual trees in Sweden by combining high resolution laser data with height resolution near infrared digital images. International Archives of Photogrammetry and Remote Sensing. Vol.XXXVI, Part 8/ W2.4. p. 4.

Pitkanen, J., Maltamo, M., Hyyppa, J. & Yu, X. 2004. Adaptive methods for individual tree detection on airborne laser based canopy height model. ISPRS: Laser Scanners for Forest and Landscape Assessment. Freiburg, Germany. pp. 187-191.

Ryukyu Shimpo. 2013. http://English.ryukyushimpo.jp. Accessed on 24 February 2013.

Sasse, J. 1998. The Forest of Japan. Japan Forest Technical Association.

Shinohara, T., Florence, R. & Asato, I. 1996. Some observation on forests and forestry on the Ryukyuan Islands. Science Bulletin of the Faculty of Agriculture. University of the Ryukyus 43: 31-41.

Shinzato, T., Wu, L., Nishihata, O., Taba, K., Enoki, T. & Hirata, E. 2000. Characteristics of sprout natural regeneration of evergreen broad-leaved forest dominated by Castanopsis sieboldiiin Okinawa: Studies on mortality and decay of stumps. Science Bulletin of the Faculty of Agriculture. University of the Ryukyus 47: 145-157.

Shinzato, T., Taba, K., Hirata, E. & Yamamori, N. 1986. Regeneration of Castanopsis sieboldiiforest. Studies on stratification and age structure of a natural stand. Science Bulletin of the Faculty of Agriculture. University of the Ryukyus 33: 245-256.

Suarez, J., Lucca, M., Gudie, J., Polsson, K., Xenadis, X., Gardiner, B. & Perks, M. 2009. An individual canopy delineation algorithm based on object-oriented segmentation and classification. Silvilaser. 14-16 October. Collage Station Texas, USA. pp. 220-230.

Wang, L., Gong, P. & Biging, G.S. 2004. Individual tee-crown delineation and tree-top detection in high-spatial-resolution aerial imagery. Photogrammmetric Engineering and Remote Sensing 70(3): 351-357.

Wu, L., Shinzato, T., Nishihata, O., Taba, K., Enoki, T. & Hirata, E. 2001. Characteristics of sprout natural regeneration of evergreen broad-leaved forest dominated by Castanopsis sieboldiiin Okinawa: Sprout position and growth. Science Bulletin of the Faculty of Agriculture. University of the Ryukyus 48: 153-163.

Xu, X., Wang, Q. & Shibata, H. 2008. Forest structure, productivity and soil properties in a subtropical ever-green broad-leaved forest in Okinawa, Japan. Journal of Forestry Research 19(4): 271-276.

 

 

*Corresponding author; email: idiana0303@yahoo.com

 

previous