Sains Malaysiana 44(1)(2015): 139–146
Quarter-Sweep Iteration Concept on Conjugate Gradient Normal
Residual Method
via Second Order Quadrature - Finite Difference Schemes for Solving
Fredholm Integro-Differential Equations
(Konsep Lelaran Sapuan Suku ke
atas Kaedah Kecerunan Konjugat Sisa Biasa menerusi Kesukuan Peringkat Kedua -
Beza Terhingga bagi Menyelesaikan Persamaan Integro-pembezaan Fredholm)
ELAYARAJA ARUCHUNAN1*, MOHANA SUNDARAM MUTHUVALU2 & JUMAT SULAIMAN3
1Department of Mathematics and Statistics, Faculty of Science
and Engineering
Curtin University, Perth WA6845, Australia
2Department of Fundamental and Applied Sciences, Universiti
Teknologi PETRONAS
31750 Tronoh, Perak, Malaysia
3Faculty of Science and Natural Resources, Universiti Malaysia
Sabah, 88400 Kota Kinabalu,
Sabah, Malaysia
Received: 14 August 2012/Accepted: 30
September 2014
ABSTRACT
In this paper, we have examined the
effectiveness of the quarter-sweep iteration concept on conjugate
gradient normal residual (CGNR) iterative
method by using composite Simpson's (CS)
and finite difference (FD) discretization
schemes in solving Fredholm integro-differential equations. For
comparison purposes, Gauss- Seidel (GS)
and the standard or full- and half-sweep CGNR methods
namely FSCGNR and HSCGNR
are also presented. To validate the efficacy of the
proposed method, several analyses were carried out such as computational
complexity and percentage reduction on the proposed and existing
methods.
Keywords: Conjugate gradients normal
residual method; linear Fredholm integro-differential equations; quarter-sweep
iteration
ABSTRAK
Dalam kertas ini, kami telah menganalisis
keberkesanan konsep lelaran sapuan suku ke atas kaedah lelaran kecerunan
konjugat sisa biasa (CGNR)
dengan menggunakan komposit Simpson's (CS)
dan beza terhingga (FD) dalam
menyelesaikan persamaan integro-pembezaan Fredholm. Bagi tujuan
perbandingan, Gauss-Seidel (GS)
dan kaedah CGNR biasa atau penuh dan
separuh sapuan iaitu FSCGNR dan
HSCGNR juga turut dibincangkan. Bagi
mengesahkan keberkesanan kaedah yang dicadangkan, beberapa analisis
seperti kekompleksan pengiraan dan pengurangan peratusan untuk kedua-dua
kaedah yang dicadangkan dan sedia ada telah dijalankan.
Kata kunci: Kaedah lelaran kecerunan konjugat sisa biasa; lelaran
sapuan suku; persamaan integro-pembezaan linear Fredholm
REFERENCES
Abdullah, A.R. 1991. The
four point explicit decoupled group (EDG) method: A fast Poisson solver. International
Journal of Computer Mathematics 38: 61-70.
Abdullah, A.R. &
Ali, N.H.M. 1996. A comparative study of parallel strategies for the solution
of elliptic pdes. Parallel Algorithms and Applications 10: 93-103.
Agarwal, R.P. 1983.
Boundary value problems for higher order integro-differential equations, Nonlinear
Analysis, Theory, Methods and Applications 7: 259-270.
Aruchunan, E.
& Sulaiman,
J. 2013. Half-sweep quadrature-difference schemes with
iterative method in solving linear Fredholm integro-differential equations. Progress in Applied Mathematics 5(1): 11-21.
Aruchunan, E.
& Sulaiman,
J. 2012a. Application of the central-difference scheme with half-sweep
Gauss-Seidel method for solving first order linear Fredholm
integro-differential equations. International Journal of Engineering and Applied Sciences 6: 296-300.
Aruchunan, E.
& Sulaiman,
J. 2012b. Comparison of closed repeated Newton-Cotes
quadrature schemes with half-sweep iteration concept in solving linear Fredholm
integro-differential equations. International Journal of
Science and Engineering Investigations 1(8): 296-300.
Aruchunan, E.
& Sulaiman, J. 2011a. Half-sweep
conjugate gradient method for solving first order linear Fredholm
integro-differential equations. Australian Journal of Basic and Applied Sciences 5: 38-43.
Aruchunan, E.
& Sulaiman, J. 2011b. Quarter sweep Gauss-Seidel
method for solving first order linear Fredholm integro-differential equations. Matematika 27: 199-208.
Aruchunan, E. & Sulaiman, J. 2010. Numerical solution
of second-order linear Fredholm integro-differential equation using generalized
minimal residual (GMRES) method. American Journal of Applied Sciences 7(6): 780-783.
Aruchunan, E., Muthuvalu, M.S. & Sulaiman, J. 2013. Application of
quarter-sweep iteration for first order linear Fredholm integro-differential
equations. AIP Conference Proceedings 1522: 168-175.
Aruchunan, E., Muthuvalu, M.S., Sulaiman, J., Koh, W.S. & Akhir,
M.K.M. 2014. An iterative solution for
second order linear Fredholm integro-differential equations. Malaysian Journal of Mathematical Science 8(2): 158-170.
Avudainayagam, A. & Vani, C. 2000.
Wavelet-Galerkin method for integro-differential equations. Applied
Numerical Mathematics 32: 247-254.
Barrett, R., Berry, M., Chan, T.F.,
Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C. &
van der Vorst, H. 1993. Templates for the
Solution of Linear Systems: Building Blocks for Iterative Methods. Philadelphia: Society for Industrial and Applied Mathematics.
Fedotov, A.I. 2009. Quadrature-difference
methods for solving linear and nonlinear singular integro-differential
equations. Nonlinear Analysis 71: e303-e308.
Hosseini, S.M. & Shahmorad, S. 2003.
Numerical solution of a class of integro-differential equations by the Tau
method with error estimation. Applied Mathematics and Computation 136:
559-570.
Kajani, M.T. & Vencheh, A. 2007.
Solving linear integro-differential equation with Legendre wavelets. International
Journal of Computer Mathematics 81(6): 719-726.
Karamete, A. & Sezer, M. 2002. A
Taylor collocation method for the solution of linear integro-differential
equations. International Journal of Computer Mathematics 79(9):
987-1000.
Kurt, N. & Sezer, M. 2008. Polynomial
solution of high-order linear Fredholm integro-differential equations with
constant coefficients. Journal of the Franklin Institute 345: 839-850.
Maleknejad, K., Mirzaee, F. &
Abbasbandy, S. 2004. Solving linear integro-differential equations system by
using rationalized Haar functions method. Applied Mathematics and
Computation 155: 317-328.
Morchalo, J. 1975. On two point boundary
value problem for integro-differential equation of second order. Fasciculi
Mathematici 9: 51-56.
Muthuvalu, M.S. & Sulaiman, J. 2011.
Half-sweep arithmetic mean method with composite trapezoidal scheme for solving
linear Fredholm integral equations. Applied Mathematics and Computation 217:
5442-5448.
Muthuvalu, M.S., Aruchunan, E. & Sulaiman, J. 2013.
Solving first kind linear Fredholm integral equations with semi-smooth kernal
using 2-point half-sweep block aritmetic mean method. AIP Conference Proceedings 1557: 350-354.
Othman, M. & Abdullah, A.R. 2000. An
efficient four points modified explicit group Poisson solver. International
Journal of Computer Mathematics 76: 203-217.
Rashed, M.T. 2003. Lagrange interpolation
to compute the numerical solutions differential and integro-differential
equations. Applied Mathematics and Computation 151: 869-878.
Ren, Y., Zhang, B. & Qiao, H. 1999. A
simple Taylor-series expansion method for a class of second kind integral
equations. Journal of Computational and Applied Mathematics 110:
15-24.
Shahsavaran, A. 2012. On the convergence
of Lagrange interpolation to solve special type of second kind Fredholm integro
differential equations. Applied Mathematical Sciences 6: 343-348.
Sulaiman, J., Othman, M. & Hasan,
M.K. 2004a. A new half-sweep arithmetic mean (HSAM) algorithm for two-point
boundary value problems. Proceedings of the International Conference on
Statistics and Mathematics and Its Applications in Development of Science and
Technology. pp. 169-173.
Sulaiman, J., Othman, M. & Hasan,
M.K. 2004b. Quarter-sweep iterative alternating decomposition explicit
algorithm applied to diffusion equations. International Journal of Computer
Mathematics 81: 1559-1565.
Sulaiman, J., Othman, M. & Hasan,
M.K. 2009. A new quarter-sweep arithmetic mean (QSAM) method to solve diffusion
equations. Chamchuri Journal of Mathematics 1: 93-103.
Wang, W. & Lin, C. 2005. A new
algorithm for integral of trigonometric functions with mechanization. Applied
Mathematics and Computation 164: 71-82.
Yalcinbas, S. & Sezer, M. 2000. The
approximate solution of high-order linear Volterra-Fredholm integro-
differential equations in terms of Taylor polynomials. Applied Mathematics
and Computation 112: 291-308.
Yalcinbas, S. 2002. Taylor polynomial
solution of nonlinear Volterra-Fredholm integral equations. Applied
Mathematics and Computation 127: 195-206.
*Corresponding author; email: earuchunan@yahoo.com
|