Sains Malaysiana 44(1)(2015):
83–89
The
Persistence of Deltamethrin in Malaysian Agricultural Soils
(Kekekalan Deltametrin dalam Tanah Pertanian Malaysia)
B.S. ISMAIL*, M. MAZLINDA & M.A.
TAYEB
School of Environmental and Natural Resource Sciences, Faculty
of Science and Technology
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul
Ehsan, Malaysia
Received: 24 September 2013/Accepted: 24 June 2014
ABSTRACT
Studies on the persistence and dissipation of deltamethrin (C22H19Br2NO3)
in two types of soil, namely peat and silty clay were conducted under
laboratory conditions. The analysis was done using a gas chromatography (GC)
equipped with an electron capture detector (ECD). The dissipation
rate of deltamethrin was faster in silty clay soil than in peat soil at 25°C.
When the temperature was increased from 25 to 35°C, the half-life of
deltamethrin decreased by 32.53% in peat soil and 22.9% in the silty clay soil
in the presence of light. When the same experiment was conducted in the dark,
the decrease in the half-life of deltamethrin was 27.9% in peat soil and 22.5%
in silty clay soil. When the soil moisture content was increased from 40 to
60%, the half-life of deltamethrin decreased by 50.7 and 19.75% in peat soil
and silty clay soil, respectively. A significant degradation rate of
deltamethrin was observed in non-autoclaved soil compared with that in
autoclaved soil where the half-life was reduced by 76.05% in peat soil and
59.21% in silty clay soil. The results showed that the degradation rate of
deltamethrin in soil had a direct relationship with the microbial activity in
the soil.
Keywords: Deltamethrin; half-life; microbial activity;
persistence; soils
ABSTRAK
Kajian ke atas kekekalan dan kadar resapan
deltametrin (C22H19Br2NO3) dalam dua jenis
tanah (tanah gambut dan tanah liat berkelodak) telah dijalankan
dalam keadaan makmal. Analisis ini dilakukan
dengan menggunakan gas kromatografi (GC) dilengkapi dengan elektron
pengesan tangkapan (ECD).
Kadar resapan deltametrin adalah lebih tinggi dalam tanah liat berkelodak
daripada tanah gambut pada 25°C. Apabila suhu meningkat antara
25 hingga 35°C, separuh hayat deltametrin menurun sebanyak 32.53%
di dalam tanah gambut dan 22.9% dalam tanah liat berkelodak dengan
kehadiran cahaya. Apabila kajian yang sama dijalankan dalam keadaan
gelap, penurunan separuh hayat deltametrin adalah lebih tinggi dengan
27.9% di dalam tanah gambut dan 22.5% dalam tanah liat berkelodak.
Apabila kelembapan tanah meningkat daripada 40 kepada 60%, separuh
hayat deltametrin masing-masing menurun kepada 50.7 dan 19.75% dalam
tanah gambut dan dalam tanah liat berkelodak. Kadar penurunan deltametrin
yang ketara diperhatikan di dalam tanah bukan autoklaf berbanding
tanah autoklaf dengan separuh hayat telah dikurangkan kepada 76.05%
di dalam tanah gambut dan 59.21% dalam tanah liat berkelodak. Hasil
kajian menunjukkan bahawa kadar penguraian deltametrin dalam tanah mempunyai hubungan
yang kukuh dengan aktiviti mikrob di dalam tanah.
Kata kunci: Aktiviti mikrob; deltametrin; kekekalan;
separuh hayat; tanah
REFERENCES
Ardley, J.H. 1999. Pesticide
considerations on environmental concern. Agricultural Sciences 12(2):
21-24.
Balmer, M.E., Goss, K.U.
& Schwarzenbach, R.P. 2000. Photolytic transformation of organic pollutants on soil surfaces
- experimental approach. Environmental Science Technology 34: 1240-1246.
Bao, S.D. 2000. Soil and
Agricultural Chemistry Analysis. Bejing: China Agriculture Press.
Bhanu, S., Archana, S., Ajay,
K., Bhatt, J.L., Bajpai, S.P., Singh, P.S. & Vandana, B. 2011. Impact of deltamethrin on environment, use as
an insecticide and its bacterial degradation: A preliminary study. International
Journal Environment Sciences 1(5): 977-985.
Bruun Hansen, H.C. 2002. Sorption
of lambda cyhalothrin, deltamethrin and fenvalerate to quartz, corundum,
kaolinite and montmorillonite [J]. Chemosphere 49(10): 1285-1294.
Chapman, R.A., Tu, C.M.,
Harris, C.S. & Cole, C. 1981. Persistence of five pyrethroid insecticides in
sterile and natural mineral and organic soil. Bulletin of
Environmental Contamination and Toxicology 26: 513-519.
Cavoski, I., Caboni, P.,
Sarais, G., Cabras, P. & Miano, T. 2007. Photodegradation of rotenone
in soils under environmental conditions. Journal of Agricultural and
Food Chemistry 55: 7069-7074.
Dungan, R.S., Gan, J. & Yates, S.R. 2003. Accelerated degradation of methyl isothiocyanate in soil. Water,
Air and Soil Pollution 142: 299-310.
Fan, X.Z., Lu, B. &
Gonj, A.J. 2005. Dynamics
of solar light photodegradation behaviour of atrazine on soil surface. Journal
of Hazardous Materials 117: 75-79.
Felsot, A. & Dahm, P.A. 1979. Sorption of organophosphorus and carbamate insecticides by soil. Journal of Agricultural and Food Chemistry 27(3): 557-563.
Ferrel, J.A. & Vencill, W.K. 2003.
Flumioxazin soil persistence and mineralisation in laboratory experiments. Journal
of Agricultural and Food Chemistry 51(16): 4719-4721.
Freed, V.H. & Chiou, C.T. 1979. Degradation of selected organophosphate pesticides in soil and
water. Journal of Agricultural and Food Chemistry 27: 706-708.
Graebing, P. & Chib, J.S. 2004. Soil
photolysis in a moisture and temperature controlled environment 2 Insecticides. Journal of Agricultural and Food Chemistry 52: 2606-2614.
Hill, I.R. 1985. Pyrethroid
residues in soil and aquatic environments. Pesticide Science 16:
192-215.
Huntsman-mapila, P. 2002. Fate
of deltamethrin. In Environmental Monitoring of Tsetse Aerial
Spraying, edited by Perkins, J.S. & Ramberg, L.
Botswana: Ministry of Agriculture.
Ismail, B.S. & Dan-Lin, O. 2003. Effects of temperature and moisture on the persistence of
terbuthylazine in two Malaysia agricultural soils. Plant Protection
Quarterly 18(2): 48-51.
Ismail, B.S. & Kalithasan, K. 1997. Effects of repeated application on persistence and downward
movement of four herbicides in soil. Australian Journal of Soil
Research 35: 503-513.
Khan, S.U., Bekhi, R.M.,
Tapping, R.I. & Akhbar, M.H. 1988. Deltamethrin residues in an organic soil under laboratory
conditions and its degradation by bacterial strain. Journal of
Agricultural and Food Chemistry 36: 636-638.
Konstantinou, I.K., Zarkadis, A.K. &
Albanis, T.A. 2001. Photodegradation of selected herbicides
in various natural waters and soils under environmental conditions. Journal
of Environmental Quality 30: 121-130.
Lawskowski, D.A. 2002. Physical
and chemical properties of pyrethroid. Reviews of Environmental
Contamination and Toxicology 174: 49.
Lee, P.W. 1985. Fate of
fenvalerate (Pydrin insecticide) in the soil environment. Journal of
Agricultural and Food Chemistry 33: 993-998.
Liu, P., Liu, Y., Liu, Q. & Liu J. 2010. Photodegradation mechanism of deltamethrin and fenvalerate. Journal
of Environmental Sciences 22(7): 1123-1128.
Ma, Y., Xu, C., Chen, S., Wen, Y. & Liu, W.
2005. Enantioselective degradation of 2, 4, 2-dichlorprop
methyl ester by sediment bacteria. Journal of Environmental Science 26(4):
152-155.
Miyamoto, J. & Mikami, N. 1983. Degradation of pyrethroid insecticides in the field. In Pesticide
Chemistry: Human Welfare and the Environment, edited by Takahashi, N.,
Yoshioka, H. & Misato, T. New York: Pergamon Press. pp. 193-200.
Okhawa, H., Nambu, K., Inui, H. & Miyamoto,
J. 1978. Metabolic fate of fenvalerate microorganisms. Pesticide Science 129: 329-330.
Racke, K.D. 2001. Environmental
Fate of Chloropyrifos. Rev. of Environ. Contam. Toxicol. New
York: Springer-Verlag.
Roberts, T. & Hutson,
D. 1999. Metabolic Pathways of
Agrochemicals. Part 2: Insecticides and Fungicides. 1st ed.
Cambridge, UK: The Royal Society of Chemistry. pp. 638-644.
Rouchaud, J., Thirion, A., Wauters, A., Van de Steene, F.,
Benoit, F., Ceustermans, N., Gillet, J., Marchand, S. & Vanparys, L. 1996. Effects of fertilizer on
insecticides adsorption and biodegradation in crop soils. Archives of
Environmental Contamination and Toxicology 31: 98-106.
Sing, B.K., Walker, A. & Wright, D.J. 2002. Persistence of chloropyriphos, fenamiphos, chlorothelonil and
pendimethalin in soil and their effects on soil microbial characteristics. Bulletin of Environmental Contamination and Toxicology 69: 181-188.
Skidmore, M.W. 1994. Influence of application methods on the
degradation of permethrin in laboratory, soil aerobic metabolism studies. Pesticide
Science 42: 101-107.
Smith, S., Willis, G.H. & Cooper,
C.M. 1995. Cyfluthrin
persistence in soil as affected by moisture, organic matter and redox
potential. Journal of Agricultural and Food Chemistry 29:
1122-1125.
Tomlin, C.D.S. 2006. The Pesticide Manual: A World
Compendium. 14th ed. Farnham, UK: British Crop Protection Council. pp.
286-287.
Vieria, S.S. 2008. Effects of pesticides used in soya bean
crops to the egg parasitoidtrichogrammapretiosum. Ciência Rural, Santa Maria 389(6): 1495-1503.
Walker, A., Moon, Y.H. & Welch,
S.J. 1992. Influence of
temperature, soil moisture and soil characteristics on the persistence of
alachlor. Pesticide Science 35: 109-116.
Wang, X.D., Zhou, S.M., Wang, H.L. & Fan, D.F. 2005. Biodegradation of imazapyr in typical soils in Zhejiang Province,
China. Journal of Environmental Science (China) 17(4): 593-597.
WHO. 1990. Environmental Health Criteria-97. Deltamethrin:
International Programmes on Chemical Safety. WHO: Geneva, Switzerland. pp.1-33.
Xuang, X., Le, L.S. & Nakatsu, C.
2000. Impact of animal
waste lagoon effluents on chloropyriphos degradation in soils. Environmental
Toxicology and Chemistry 19: 2864-2870.
Yanez, L., Ortiz-Perez, D., Barts Le
Borja-Aburto, V.H. & Diaz- Brriga, F. 2002. Levels of dichlorodiphenyltrichloroethane
and deltamethrin in humans and environmental samples in malaria’s areas of
Mexico. Environmental Research, Section A 88: 174.
*Corresponding
author; email: ismail@ukm.edu.my
|