Sains Malaysiana 45(11)(2016): 1603–1607

 

Assessment of Ultimate Bearing Capacity based on the Hoek-Brown Failure Criterion

(Penilaian Keupayaan Galas Muktamad berdasarkan Kriteria Kegagalan Hoek-Brown)

 

GOH THIAN LAI1*, MD. SELIM REZA1, ABDUL GHANI RAFEK2, AILIE SOFYIANA SERASA1,  AZIMAH HUSSIN1,3 & LEE KHAI ERN4

 

1Geology Program, School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor Darul Ehsan

Malaysia

 

2Department of Geosciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar

31750 Tronoh, Perak Darul Ridzuan, Malaysia

 

3Chemical & Petroleum Engineering Department, Faculty of Engineering, Technology & Built Environment (FETBE), UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia

 

4Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia

43600, UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 26 October 2015/Accepted: 5 April 2016

 

ABSTRACT

The ultimate bearing capacity is an essential requirement in design quantification for shallow foundations especially for structures built on large rock masses. In many engineering projects, structures built on foundation of heavily jointed rock masses may face issues such as instability and sudden catastrophic rock slope failure. Determination of the ultimate bearing capacity (Qult) of foundations resting on rock mass has traditionally been determined by employing several strength criterions. One of the accepted and widely implemented methods is to use the Hoek-Brown failure criterion 2002, where the required parameters are determined from a rock mass classification system, Geological Strength Index (GSI). This paper defines an assessment for ultimate bearing capacity (Qult) based on the Hoek-Brown failure criterion 2002 for a granitic rock slope beneath a 20 m diameter concrete water tank at Bandar Mahkota Cheras, Kajang, Selangor. Based on the Hoek-Brown failure criterion 2002, the ultimate bearing capacity (Qult) of rock mass was 7.91 MPa. The actual stress acting on the rock mass was 0.32 MPa. The assessment showed that the rock mass is safe since the ultimate bearing capacity (Qult) is 24.7 times higher than the actual stress acting on the rock mass.

 

Keywords: Geological Strength Index; Hoek-Brown failure criterion 2002; rock mass; ultimate bearing capacity

 

ABSTRAK

Keupayaan galas muktamad merupakan keperluan penting dalam reka bentuk pengkuantitian bagi asas cetek terutama bagi struktur yang dibina di atas jasad batuan yang besar. Dalam banyak projek kejuruteraan, struktur yang dibina di atas asas jasad batuan berkekar banyak yang besar mungkin menghadapi isu seperti ketidakstabilan dan bencana kegagalan cerun batu secara tiba-tiba. Penentuan keupayaan galas muktamad (Qult) pada asas yang berada di atas jasad batuan secara tradisi telah ditentukan dengan menggunakan beberapa kriteria kekuatan. Salah satu kaedah yang diterima dan diguna pakai secara meluas adalah menggunakan kriteria kegagalan Hoek-Brown 2002 dan parameter yang dikehendaki ditentukan daripada pengelasan sistem jasad batuan, Indeks Kekuatan Geologi (GSI). Kertas ini mentakrifkan penilaian bagi keupayaan galas muktamad (Qult) berdasarkan kriteria kegagalan Hoek-Brown 2002 untuk satu cerun batu granit di bawah tangki air konkrit berdiameter 20 m di Bandar Mahkota Cheras, Kajang, Selangor. Berdasarkan kriteria kegagalan Hoek-Brown 2002, keupayaan galas muktamad (Qult) jasad batuan adalah 7.91 MPa. Tegasan sebenar yang bertindak atas jasad batuan ialah 0.32 MPa. Penilaian menunjukkan bahawa jasad batuan adalah selamat kerana keupayaan galas muktamad (Qult) adalah 24.7 kali lebih tinggi daripada tegasan sebenar yang bertindak di atas jasad batuan.

 

Kata kunci: Indeks Kekuatan Geologi; jasad batuan; keupayaan galas muktamad; kriteria kegagalan Hoek-Brown 2002

REFERENCES

Bieniawski, Z.T. 1989. Engineering Rock Mass Classification. Chichester: Wiley.

Bignell, J.D. & Snelling, N.J. 1977. Geochronology of Malayan granites. Overseas Geology and Mineral Resoures 47: 71.

Ghani Rafek, A. & Goh, T.L. 2012. Correlation of joint roughness coefficient (JRC) and peak friction angles of discontinuities of Malaysian schists. Earth Science Research 1(1). doi:10.5539/ esr.v1n1p57.

Goh, T.L., Ghani Rafek, A., Ailie, S.S., Norbert, S., Azimah, H. & Lee, K.E. 2015a. Correlation of ultrasonic velocity slowness with uniaxial compressive strength of schists in Malaysia. Electronic Journal Geotechnical Engineering 20: 12663-12670.

Goh, T.L., Norbert, S., Azimah, H., Ailie, S.S. & Ghani Rafek, A. 2015b. Weathering related rock material strength reduction: the Malaysian granites. International Conference on Engineering Geology in New Millennium, 27-29 October, IIT Delhi. New Delhi. Journal of Engineering Geology Special Publication. pp. 1445-1450.

Goh, T.L., Norbert, S., Azimah, H. & Ghani Rafek, A. 2015c. Impact of weathering on rock material strength of granite. International Conference on Geology June 22-23, 2015 Florida, USA. Journal of Geology & Geophysics DOI: 10.4172/2329-6755.S1.003

Goh, T.L., Ghani Rafek, A., Ailie, S.S., Norbert, S. Lee, K.E. & Azimah, H. 2015d. Empirical correlation of uniaxial compressive strength and primary wave velocity of Malaysian schists. Electronic Journal Geotechnical Engineering 20: 1801-1812.

Goh, T.L., Ghani Rafek, A., Ailie, S.S., Norbert, S., Lee, K.E. & Azimah, H. 2014. Empirical correlation of uniaxial compressive strength and primary wave velocity of Malaysian granites. Electronic Journal Geotechnical Engineering 19(E): 1063-1072.

Goh, T.L., Rahim Samsudin, A. & Abdul Ghani Rafek. 2011a. The application of the spectral analysis of surface wave method for rock mass characterization. Journal of Environmental and Engineering Geoscience 17(1): 77-84.

Goh, T.L., Rahim Samsudin, A. & Ghani Rafek, A. 2011b. Application of spectral analysis of surface waves (SASW) method: Rock mass characterization. Sains Malaysiana 40(5): 425-430.

Goh, T.L., Ghani Rafek, A., Hariri Ariffin, M. & Baizura Yunus, N. 2011c. Direct shear test of granite discontinuity plane surface. Sains Malaysiana 40(5): 419-423.

Goh, T.L., Ghani Rafek, A., Rahim Samsudin, A., Hariri Ariffin, M. & Baizura Yunus, N. 2011d. Rock mass geomechanical characterization by seismic methods: Poisson’s ratio. Sains Malaysiana 40(6): 561-568.

Hoek, E., Carranza-Torres, C.T. & Corkum, B. 2002. Hoek- Brown failure criterion-2002 edition. Proceedings of the 5th North American Rock Mechanics Symposium, Toronto, Canada. 1: 267-273.

Hoek, E., Marinos, P. & Benissi, M. 1998. Applicability of the Geological Strength Index (GSI) classification for very weak and sheared rock masses. The case of the Athens schist formation. Bull. Engg. Geol. Env. 57(2): 151-160.

Norbert, S., Rodeano, R., Ghani Rafek, A., Goh, T.L., Noran, N.N.A., Kamilia, S., Nightingle, L.M., Azimah, H. & Lee, K.E. 2016. Rock mass assessment using Geological Strength Index (GSI) along the Ranau-Tambunan Road, Sabah, Malaysia. Research Journal of Applied Sciences, Engineering and Technology 12(1): 108-115.

 

 

*Corresponding author; email: gdsbgoh@gmail.com

 

 

 

 

previous