Sains Malaysiana 45(11)(2016): 1675–1678
Biocompatibility of TiO2
Nanorods and Nanoparticles on HeLa Cells
(Biokeserasian
TiO2
Nanorod dan
Nanopartikel ke atas Sel HeLa)
NOOR SAKINAH
KHALID1*,
FATIN
IZYANI
MOHD
FAZLI1,
NOOR
KAMALIA
ABD
HAMED2,
MUHAMMAD
LUQMAN
MOHD NAPI2, SOON CHIN
FHONG3
& MOHD KHAIRUL AHMAD2
1Faculty of Electrical and Electronic
Engineering, Universiti Tun Hussein Onn Malaysia
86400
Parit Raja, Batu Pahat, Johor Darul Takzim, Malaysia
2Solar Device Research Laboratory,
MiNT-SRC, UTHM, Universiti
Tun Hussein Onn Malaysia
86400
Parit Raja, Batu Pahat, Johor Darul Takzim, Malaysia
3Biosensor and Bioengineering Labratory, MiNT-SRC, UTHM, Universiti Tun Hussein Onn Malaysia
86400
Parit Raja, Batu Pahat, Johor Darul Takzim, Malaysia
Received:
20 April 2015/Accepted: 12 October 2015
ABSTRACT
Titanium dioxide (TiO2)
nanorods and nanoparticles had been
successfully done by hydrothermal method
and spray pyrolysis deposition technique, respectively. Form XRD results, crystallite structure
for TiO2 nanorods
is rutile phase at 2θ degree 27.5° which corresponded to
[110] orientation. Whereas, TiO2 nanoparticles
produced anatase phase
at 2θ degree 25.3° which corresponded to [110] plane. The
structure of nanorods and nanoparticles were characterized using FESEM.
The size of nanorods was in the range
of 80 to 100 nm. While, the nanoparticles size was ranging from
25 to 35 nm. The HeLa cells were grown on those TiO2 and were observed under fluorescence
microscope. The cells showed healthy sign of growth on TiO2 nanorods and nanoparticles substrates. Thus, TiO2 nanorods and nanoparticles are biocompatible to HeLa cells.
Keywords: Biocompatibility;
nanoparticles; nanorods; TiO2
ABSTRACT
Titanium
dioksida (TiO2)
berbentuk nanorod
dan nanopartikel telah berjaya dihasilkan
melalui kaedah
hidroterma dan teknik semburan pirolisis. Analisis daripada
XRD
menunjukkan komposisi
untuk TiO2 nanorod adalah fasa rutil pada
2θ darjah
dengan bacaan
27.5° yang sepadan dengan jujukan [110]. Manakala nanopartikel TiO2 adalah fasa anatas
pada 2θ
darjah dengan bacaan
25.3° yang sepadan
dengan jujukan
[101]. Bentuk
nano-silinder dan nano-partikel telah dianalisis menggunakan FESEM.
Saiz
nanorod adalah antara 80 dan 100 nm diameter.
Selain
itu, saiz nano-partikel
adalah 25 hingga
35 nm diameter. Kemudian, sel HeLa telah
dibiakkan di atas
sampel TiO2 tersebut. Setelah itu, sel HeLa
diperhatikan di bawah mikroskop pendarfluor. Keputusan menunjukkan pertumbuhan sel HeLa yang sihat pada TiO2 nano-silinder dan nano-partikel. Oleh itu, TiO2 nanorod dan nano-partikel
menunjukkan keserasian
biologi kepada sel HeLa.
Kata kunci: Keserasian
biologi; nano-partikel;
nano-silinder; TiO2
REFERENCES
Ahmad, M.K. & Murakami, K. 2012. Low temperature and normal
pressure growth of rutile-phased TiO2 nanorods/ nanoflowers for DSC application
prepared by hydrothermal method. Journal of Advanced
Research in Physics 3(2): 1-4.
Gao, M., Li, Y., Guo, M., Zhang, M. &
Wang, X. 2012. Effect of substrate pretreatment
on controllable growth of TiO2 nanorod arrays. Journal of Materials Science &
Technology 28(7): 577-586.
He, Z., Cai, Q., Fang, H., Situ, G., Qiu, J., Song, S. & Chen, J. 2013. Photocatalytic
activity of TiO2 containing
anatase nanoparticles and rutile nanoflower
structure consisting of nanorods.
Journal of Environmental Sciences 25(12): 2460-2468.
Khalid, N.S.,
Wan Zaki, W.S. & Ahmad, M.K. 2015. Growth of rutile phased titanium
dioxide (TiO2) nanoflowers
for HeLa cells treatment. In 5th International
Conference on Biomedical Engineering in Vietnam, IFMBE Proceedings
46, edited by Vo Van Toi and Tran Ha Lien Phuong. New York:
Springer International Publishing. pp. 243-246.
Kommireddy, D.S., Patel,
A.A., Shutave, T.G., Mills, D.K., Lvov,
Y.M. 2005. Layer-by-layer assembly if TiO2
nanoparticles for stable hydrophilic biocompatible coatings. Journal
of Nanoscience and Nanotechnology 5(7): 1081- 1087.
Patil, G.E., Kajale, D.D., Gaikwad, V.B. & Jain, G.H. 2012. Spray pyrolysis deposition of nanostructured
tin oxide thin films. ISRN Nanotechnology 2012: Article
ID 275872.
Ranga Rao, A. &
Dutta, V. 2007.
Low-temperature synthesis of TiO2
nanoparticles and preparation of TiO2 thin films by
spray deposition. Solar Energy Materials & Solar
Cells 91: 1057-1080.
Sapizah Rahim, Ainon Hamzah & Shahidan Radiman. 2012. Inactivation of Escherichia
coli under fluorescent lamp using TiO2 nanoparticles
synthesized via sol gel method. Sains
Malaysiana 41(2): 219-224.
Seo, J-W., Chung,
H., Kim, M-Y., Lee, J., Choi, I.H. & Cheon,
J. 2007.
Development of water-soluble single-crystalline TiO2 nanoparticles
for photocatalytic cancer-cell treatment. Small 3(5):
850-853.
Valencia, S.,
Marín, J.M. & Restrepo, G. 2009.
Study of the bandgap of synthesized titanium
dioxide nanoparticules using the sol-gel
method and a hydrothermal treatment. Open Materials Science
Journal 4: 9-14.
Zielinski, S. 2010. Henrietta Lacks’
‘Immortal’ Cells. Smithsonian Channel.
http://www.smithsonianmag.com/science-nature/ Henrietta-Lacks-Immortal-Cells.html.
*Corresponding author;
email: noorsakinahkhalid@gmail.com