Sains Malaysiana 45(11)(2016): 1679–1687
Effect of Cement Additive and Curing Period
on Some Engineering Properties of Treated Peat Soil
(Kesan Aditif Simen dan
Tempoh Perawatan
terhadap Beberapa Sifat Kejuruteraan Tanah Gambut Terawat)
Z.A. RAHMAN*,
N.
SULAIMAN,
S.A.
RAHIM,
W.M.R.
IDRIS
& T. LIHAN
Pusat Pengajian Sains Sekitaran dan Sumber Alam,
Fakulti Sains
dan Teknologi
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor
Darul Ehsan, Malaysia
Received:
20 September 2013/Accepted: 28 March 2016
ABSTRACT
Peat soil is characterized
by its high content of decomposed organic matter. Majority of
areas occupied by peatland have been developed for agriculture
sectors such as pineapple cultivation and oil palm. Due to its
geotechnical drawback characteristics such as highly compressibility
and low shear strength, peat soil is classified as problematic
soils and unstable for engineering structures. Lack of suitable
and expensive price of lands, peatland will be an alternative
option for future development. Prior to construction works, stabilization
of peat soil should be carried out to enhance its engineering
characteristics. This paper presents the effect of cement and
curing period on engineering properties of the cement-treated
peat soil. Some engineering variables were examined including
the compaction behaviour, permeability
and unconfined compressive strength (UCS). The Atterberg
limit test was also performed to examine the influence of cement
addition on peat soil. The cement-treated peat soils were prepared
by adding varying amount of ordinary Portland cement (OPC) ranging between 0% and 40%
of dry weight of peat soil. In order to examine the effect of
curing, the treated samples were dried at room temperature for
three and seven days while for UCS tests samples were extended to 28 days prior to testings. The results showed that the liquid limit of treated
soil decreased with the increase of cement content. Maximum dry
density (MDD)
increased while optimum moisture content (OMC)
dropped with the increase in cement content. Permeability of treated
soil decreased from 6.2×10-4 to 2.4×10-4 ms-1 as
cement content increase from 0% to 40%. In contrast, the UCS tests
indicated an increase in uncompressive
strength with the increase in cement contents and curing period.
The liquid limit and permeability were also altered as curing
periods were extended from three to seven days. This study concluded
that geotechnical properties of peat soil can be stabilized using
ordinary cement and by modification of the curing periods.
Keywords: Curing; peat soil;
Portland cement; treated soil; unconfined compressive strength
ABSTRAK
Tanah
gambut dicirikan
oleh kandungan reputan organiknya yang tinggi. Kebanyakan kawasan
tanah gambut
telah dibangunkan untuk sektor pertanian
seperti penanaman
nenas dan kelapa
sawit. Akibat daripada kelemahan
sifat geotekniknya
seperti kebolehmampatan yang tinggi dan kekuatan
ricih yang rendah,
tanah gambut dikelaskan
sebagai tanah
bermasalah dan tidak stabil untuk
struktur kejuruteraan.
Kekurangan
tanah yang sesuai
dan harga yang mahal menyebabkan tanah gambut merupakan
pilihan alternatif
bagi pembangunan pada masa hadapan. Sebelum kerja pembinaan dijalankan, penstabilan tanah gambut perlu
dilakukan untuk
meningkatkan ciri geoteknikal. Kertas ini membincangkan
peranan simen
dan tempoh perawatan
ke atas sifat
kejuruteraan tanah
gambut terawat. Beberapa parameter
kejuruteraan diuji
terdiri daripada
lakuan pemadatan, ketelapan dan kekuatan
mampatan tidak
terkurung (UCS). Ujian had Atterberg juga dijalankan bagi melihat pengaruh simen terhadap tanah gambut. Tanah gambut terawat simen telah disediakan
dengan menambahkan
simen Portland biasa (OPC)
pada jumlah
yang berbeza antara 0% dan 40% terhadap berat kering tanah
gambut. Untuk menguji kesan
perawatan, sampel terawat dikeringkan pada suhu bilik
selama tiga
dan tujuh hari manakala bagi UCS dilanjutkan kepada 28 hari sebelum pengujian. Hasil kajian menunjukkan
bahawa had cecair
tanah yang terawat menurun dengan peningkatan kandungan simen. Ketumpatan kering maksimum
(MDD)
meningkat manakala
kandungan lembapan optimum (OMC)
menurun dengan
peningkatan dalam kandungan simen. Kebolehtelapan tanah yang terawat menurun daripada 6.2 × 10-4 kepada
2.4 × 10-4 ms-1 dengan kandungan simen meningkat daripada 0% hingga 40%. Sebaliknya, ujian UCS menunjukkan
peningkatan dalam
kekuatan dengan peningkatan kandungan simen dan tempoh
perawatan. Had
cecair dan ketelapan
juga berubah dengan
peningkatan tempoh perawatan. Kajian ini menyimpulkan
bahawa sifat
geoteknikal tanah gambut distabilkan dengan penggunaan simen biasa dan
pengubahsuaian tempoh
perawatan.
Kata kunci: Kekuatan
mampatan tidak
terkurung; simen Portland; tanah gambut; tanah
terawat
REFERENCES
Abu
Bakar, I. 2007. Agriculture on peat in Malaysia: Is it wise? MARDI/RESTORPEAT
workshop on Wise Use of Tropical Peatland, April 5-6.
Johor Baharu, Malaysia.
Aminur, M.R.,
Kolay, P.K. & Taib,
S.N.L. 2009. Effect of admixtures on the stabilization of peat
soil from Sarawak. Indian Geotechnical
Conference 2009. pp. 410-414.
Andriesse, J.P. 1988. Nature and
management of tropical peat soils. FAO
Soil Bulletin 59. Rome: FAO. p. 179.
Abdul Jamil, M.A., Chow, W.T., Chan, Y.K. & Siew, K.Y. 1989. Land use of peat in Peninsular Malaysia. Bengkel Kebangsaan Penyelidikan dan Pembangunan Tanah
Gambut. Serdang,
Selangor: MARDI. pp. 21-22.
ASTM. 1994. Annual Book of ASTM Standards, Soil and Rock, vol 04.08, Philadelphia: American Society for Testing and
Materials.
Axelsson, K.,
Johansson, S.E. & Anderson, R. 2002. Stabilization of Organic Soils by Cement and Puzzolanic
Reactions- Feasibility Study. Swedish Deep Stabilization
Research Centre, Report 3. p. 51.
Basha, E.A.,
Hashim, R., Mahmud, H.B. & Muntohar, A.S. 2004. Stabilization
of residual soil with rice husk and cement. Construction
and Building Materials 19: 448-453.
Bediako, M.
& Frimpong, A.O. 2013. Alternative binders for increased sustainable construction in Ghana-A
guide for building professional. Material Sciences and
Apllications 4: 20-28.
Bergado, D.T. 1996. Soil compaction
and soil stabilization by admixtures. Proceedings
of the Seminar on Ground Improvement Application to Indonesians
Soft Soils, Jakarta, Indonesia. pp. 23-26.
Boobathiraja, S.,
Balamurugan, P., Dhansheer,
M. & Adhikari, A. 2014. Study
on strength of peta soil stabilised
with cement and other pozzolanic materials.
International Journal of Civil Engineering Research 5(4):
431-438.
British Standard Institution 1377. 1990a.
Methods of Test for Soil for Civil Engineering Purposes-Part
2: Classification Tests. BS1377, London, ISBN: 0580178676,
p. 68.
British Standard Institution 1377. 1990b.
Methods of Test for Soil for Civil Engineering Purposes-Part
4: Compaction-Related Tests. BS1377, London, ISBN: 0580180700,
p. 70.
British Standard Institution 1377. 1990c.
Methods of Test for Soil for Civil Engineering Purposes-Part
5: Compressibility, Permeability and Durability Tests. BS1377,
London, ISBN: 0580180301, p. 42.
Deboucha, S.,
Hashim, R. & Alwi,
A. 2008. Engineering properties of stabilized tropical peat soils. Electronic
Journal of Geotechnical Engineering 13(E): 1-9.
Deboucha, S.
& Hashim, R. 2010. Effect
of OPC and PFA cement on stabilized peat bricks. International
Journal of the Physical Sciences 5(11): 1671-1677.
Deboucha, S.
& Hashim, R. 2009. Durability and swelling of tropical stabilized peat soils.
Journal of Applied Sciences 9(13): 2480-2484.
Department of Irrigation & Drainage Sarawak (DIDS). 2008. http://www.did.sarawak.gov.my.
Duraisamy, Y.,
Huat, B.B.K. & Muniandy,
R. 2009. Compressibility behaviour of fibrous peat
reinforced with cement columns. Geotechnical and Geological
Engineering 27: 619-629.
Duraisamy, Y.,
Huat, B.B.K. & Aziz, A.A. 2007. Engineering properties and compressibility behaviour
of tropical peat soil. American Journal of Applied Sciences
4(10): 768-773.
Eriktius, D.T.,
Leong, E.C. & Rahardjo, H. 2001. Shear
strength of peaty soil-cement mixes. Proceedings
of 3rd International Conference on Soft Soil Engineering, Hong
Kong. pp. 551- 556.
Hartlen, J.
& Wolski, W. 1996. Embankments on Organic Soils. 1st ed. Amsterdam: Elsevier
Science.
Hashim, R.
& Islam, S. 2008a. A model study to determine
engineering properties of peat soil and effect on strength after
stabilisation. European Journal of Scientific Research
22(2): 205-215.
Hashim, R.
& Islam, S. 2008b. Engineering properties
of peat soils in Peninsular, Malaysia. Journal of Applied
Sciences 8(22): 4215-4219.
Huat, B.B.K., Asadi, A. & Kazemian, S. 2009. Experimental investigation
on geomechanical properties of tropical
organic soils and peat. American Journal of Engineering
and Applied Sciences 2(1): 184-188.
Huat, B.B.K., Maail, S. & Mohamed, T.A. 2005. Effect of chemical admixtures on the engineering properties of tropical
peat soils. American Journal of Applied Sciences 2(7):
1113-1120.
Islam, M.S. & Hashim, R. 2008. Use of mackintosh probe test for field investigation in peat soil.
Proceedings of the International Conference,
May 26-27, Best Western Premier Seri Pacific Kuala Lumpur, Malaysia.
p. 27.
Jayawardane, D.L.N.B.,
Ukwatta, U.P.A.S., Weerakoon,
W.M.N.R. & Pathirana, C.K. 2012. Physical
and chemical properties of fly ash based Portland pozzolana
cement. Civil Engineering Research Exchange
Symposium 2012, University of Ruhuna,
India. pp. 8-11.
Kalantari,
B. & Prasad, A. 2014. A study of the effect of various curing techniques on the strength
of stabilized peat. Transportation Geotechnics 1: 119-128.
Kaya, Z., Cayabatmaz, S., Kara, H.B.
& Uncuoglu, E. 2013. Determination
of the properties of Kayseri peat. Proceedings of 2nd
International Balkan Conference on Challenges of Civil Engineering,
23-25 May, Epoka University Tirana Albania. pp. 882-889.
Kolay,
P.K., Sii, H.Y. & Taib,
S.N.L. 2011.
Tropical peat soil stabilization using class F pond ash from coal
fired power plant. International Journal of Civil and Environmental
Engineering 3(2): 79-83.
Kolay,
P.K. & Pui, M.P. 2010. Peat stabilization using gypsum and fly ash. Journal of
Civil Engineering, Science and Technology 1: 2.
Landva,
A.O. & Pheeney, P.E. 1980. Peat fabric and structure. Canadian Geotechnical Journal
17(3): 416-435.
Lo, S.R. &
Wardani, S.P.R. 2002. Strength and dilatancy
of stabilized by cement and fly ash mixture. Canadian Geotechnical
Journal 39(1): 77-89.
Lorenzo,
A.L. & Bergado, D.T. 2004. Fundamental parameters of cement-admixed clay-new approach.
Journal of Geotechnical and Geoenvironmental
Engineering 130(10): 1042-1050.
Melling,
L., Ambak, K., Osman, J. & Husni,
A. 1999.
Water management for the sustainable utilisation
of peat soils for agriculture. International
Conference & Workshop on Tropical Peat Swamps, 27-29 July,
Penang, Malaysia.
Mohidin,
M.N., Zainorabdin, A., Madun,
A., Yusof, M.F., Mokhtar, M. & Chew,
Y.F. 2007. Some index properties
on Rengit peat soil stabilize with cement-lime.
Prosiding Kebangsaan Awam 07, 29-31 May, Langkawi Malaysia.
Mutert, E., Fairhurst, T.H. & von Uekῠll,
H.R. 1999. Agronomic management of oil palm
on deep peat. Better Crops International 13(1):
22-27.
Nontananandh,
S., Thakon, Y. & Sanupong,
B. 2002.
Scanning electron microscopic investigation
of cement stabilized soil. Proceedings of the 8th National
Convention of Civil Engineering 2: 120-125.
Sariosseiri,
F. & Muhunthan, B. 2009. Effect of cement treatment on geotechnical properties of some Washington
State soils. Engineering Geology 104:
119-125.
Shamshuddin Jusop. 1981. Asas Sains Tanih. Kuala Lumpur: Dewan
Bahasa dan Pustaka.
Silvius, M. 2007.
Palm oil expansion could boos carbon:
The growing use of palm oil for biofuels production is often in
conflict with environmental concerns. Bioenergy Business 1:
14-15.
Skempton,
A.W. & Petley, D.J. 1970. Ignition loss and otherproperties of peats
and clays from Avonmouth, King’s Lynnand Cranberry Moss. Géotechnique 20(4): 343-356.
Sowers,
G.F. 1979.
Introductory Soil Mechanics and Foundations.
4th ed. New York: Macmillan. p.
621.
Tang,
B.L., Bakar, I. & Chan, C.M. 2011. Reutilization
of organic and peat soils by deep cement mixing. World
Academy of Science, Engineering and Technology 50: 674-679.
Teja,
P.R.K., Suresh, K. & Uday, K.V.
2015. Effect of curing
time on behaviour and engineering properties
of cement treated soils. International Journal of Innovation
Research in Science, Engineering and Technology 4(6): 4649-4657.
van Impe, W. 1989. Soil Improvement Techniques
and Their Evolution. London: Taylor & Francis.
Von Post, L. 1922.
SGU peat inventory and some preliminary results.
Svenska Mosskulturføreningens Tidsskrift
36: 1-27.
Wetlands
International.
2010. A Quick Scan of Peatlands in Malaysia. Petaling
Jaya, Malaysia: Wetlands International- Malaysia. p.
50.
Whitlow,
R. 2001.
Basic Soil Mechanics. 4th
ed. Harlow, Essex, UK: Prentice Hall.
Wong,
L.S., Hashim, R. & Ali, F.H. 2008. Behaviour of stabilized peat soils in unconfined compression
tests. American Journal of Engineering and Applied Sciences
1(4): 274-279.
Zukri,
A. 2013.
Pekan soft clay treated with hydrated
lime as a method of soil stabilizer. Malaysian
Technical Universities Conference on Engineering & Technology
2012, MUCET 2012, Part 3 - Civil and Chemical Engineering.
Procedia Engineering 53: 37-41.
*Corresponding author; email: fahmirina@gmail.com