Sains Malaysiana 45(11)(2016): 1679–1687

 

Effect of Cement Additive and Curing Period on Some Engineering Properties of Treated Peat Soil

(Kesan Aditif Simen dan Tempoh Perawatan terhadap Beberapa Sifat Kejuruteraan Tanah Gambut Terawat)

 

Z.A. RAHMAN*, N. SULAIMAN, S.A. RAHIM, W.M.R. IDRIS & T. LIHAN

 

Pusat Pengajian Sains Sekitaran dan Sumber Alam, Fakulti Sains dan Teknologi

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 20 September 2013/Accepted: 28 March 2016

 

ABSTRACT

Peat soil is characterized by its high content of decomposed organic matter. Majority of areas occupied by peatland have been developed for agriculture sectors such as pineapple cultivation and oil palm. Due to its geotechnical drawback characteristics such as highly compressibility and low shear strength, peat soil is classified as problematic soils and unstable for engineering structures. Lack of suitable and expensive price of lands, peatland will be an alternative option for future development. Prior to construction works, stabilization of peat soil should be carried out to enhance its engineering characteristics. This paper presents the effect of cement and curing period on engineering properties of the cement-treated peat soil. Some engineering variables were examined including the compaction behaviour, permeability and unconfined compressive strength (UCS). The Atterberg limit test was also performed to examine the influence of cement addition on peat soil. The cement-treated peat soils were prepared by adding varying amount of ordinary Portland cement (OPC) ranging between 0% and 40% of dry weight of peat soil. In order to examine the effect of curing, the treated samples were dried at room temperature for three and seven days while for UCS tests samples were extended to 28 days prior to testings. The results showed that the liquid limit of treated soil decreased with the increase of cement content. Maximum dry density (MDD) increased while optimum moisture content (OMC) dropped with the increase in cement content. Permeability of treated soil decreased from 6.2×10-4 to 2.4×10-4 ms-1 as cement content increase from 0% to 40%. In contrast, the UCS tests indicated an increase in uncompressive strength with the increase in cement contents and curing period. The liquid limit and permeability were also altered as curing periods were extended from three to seven days. This study concluded that geotechnical properties of peat soil can be stabilized using ordinary cement and by modification of the curing periods.

 

Keywords: Curing; peat soil; Portland cement; treated soil; unconfined compressive strength

 

ABSTRAK

Tanah gambut dicirikan oleh kandungan reputan organiknya yang tinggi. Kebanyakan kawasan tanah gambut telah dibangunkan untuk sektor pertanian seperti penanaman nenas dan kelapa sawit. Akibat daripada kelemahan sifat geotekniknya seperti kebolehmampatan yang tinggi dan kekuatan ricih yang rendah, tanah gambut dikelaskan sebagai tanah bermasalah dan tidak stabil untuk struktur kejuruteraan. Kekurangan tanah yang sesuai dan harga yang mahal menyebabkan tanah gambut merupakan pilihan alternatif bagi pembangunan pada masa hadapan. Sebelum kerja pembinaan dijalankan, penstabilan tanah gambut perlu dilakukan untuk meningkatkan ciri geoteknikal. Kertas ini membincangkan peranan simen dan tempoh perawatan ke atas sifat kejuruteraan tanah gambut terawat. Beberapa parameter kejuruteraan diuji terdiri daripada lakuan pemadatan, ketelapan dan kekuatan mampatan tidak terkurung (UCS). Ujian had Atterberg juga dijalankan bagi melihat pengaruh simen terhadap tanah gambut. Tanah gambut terawat simen telah disediakan dengan menambahkan simen Portland biasa (OPC) pada jumlah yang berbeza antara 0% dan 40% terhadap berat kering tanah gambut. Untuk menguji kesan perawatan, sampel terawat dikeringkan pada suhu bilik selama tiga dan tujuh hari manakala bagi UCS dilanjutkan kepada 28 hari sebelum pengujian. Hasil kajian menunjukkan bahawa had cecair tanah yang terawat menurun dengan peningkatan kandungan simen. Ketumpatan kering maksimum (MDD) meningkat manakala kandungan lembapan optimum (OMC) menurun dengan peningkatan dalam kandungan simen. Kebolehtelapan tanah yang terawat menurun daripada 6.2 × 10-4 kepada 2.4 × 10-4 ms-1 dengan kandungan simen meningkat daripada 0% hingga 40%. Sebaliknya, ujian UCS menunjukkan peningkatan dalam kekuatan dengan peningkatan kandungan simen dan tempoh perawatan. Had cecair dan ketelapan juga berubah dengan peningkatan tempoh perawatan. Kajian ini menyimpulkan bahawa sifat geoteknikal tanah gambut distabilkan dengan penggunaan simen biasa dan pengubahsuaian tempoh perawatan.

 

Kata kunci: Kekuatan mampatan tidak terkurung; simen Portland; tanah gambut; tanah terawat

REFERENCES

Abu Bakar, I. 2007. Agriculture on peat in Malaysia: Is it wise? MARDI/RESTORPEAT workshop on Wise Use of Tropical Peatland, April 5-6. Johor Baharu, Malaysia.

Aminur, M.R., Kolay, P.K. & Taib, S.N.L. 2009. Effect of admixtures on the stabilization of peat soil from Sarawak. Indian Geotechnical Conference 2009. pp. 410-414.

Andriesse, J.P. 1988. Nature and management of tropical peat soils. FAO Soil Bulletin 59. Rome: FAO. p. 179.

Abdul Jamil, M.A., Chow, W.T., Chan, Y.K. & Siew, K.Y. 1989. Land use of peat in Peninsular Malaysia. Bengkel Kebangsaan Penyelidikan dan Pembangunan Tanah Gambut. Serdang, Selangor: MARDI. pp. 21-22.

ASTM. 1994. Annual Book of ASTM Standards, Soil and Rock, vol 04.08, Philadelphia: American Society for Testing and Materials.

Axelsson, K., Johansson, S.E. & Anderson, R. 2002. Stabilization of Organic Soils by Cement and Puzzolanic Reactions- Feasibility Study. Swedish Deep Stabilization Research Centre, Report 3. p. 51.

Basha, E.A., Hashim, R., Mahmud, H.B. & Muntohar, A.S. 2004. Stabilization of residual soil with rice husk and cement. Construction and Building Materials 19: 448-453.

Bediako, M. & Frimpong, A.O. 2013. Alternative binders for increased sustainable construction in Ghana-A guide for building professional. Material Sciences and Apllications 4: 20-28.

Bergado, D.T. 1996. Soil compaction and soil stabilization by admixtures. Proceedings of the Seminar on Ground Improvement Application to Indonesians Soft Soils, Jakarta, Indonesia. pp. 23-26.

Boobathiraja, S., Balamurugan, P., Dhansheer, M. & Adhikari, A. 2014. Study on strength of peta soil stabilised with cement and other pozzolanic materials. International Journal of Civil Engineering Research 5(4): 431-438.

British Standard Institution 1377. 1990a. Methods of Test for Soil for Civil Engineering Purposes-Part 2: Classification Tests. BS1377, London, ISBN: 0580178676, p. 68.

British Standard Institution 1377. 1990b. Methods of Test for Soil for Civil Engineering Purposes-Part 4: Compaction-Related Tests. BS1377, London, ISBN: 0580180700, p. 70.

British Standard Institution 1377. 1990c. Methods of Test for Soil for Civil Engineering Purposes-Part 5: Compressibility, Permeability and Durability Tests. BS1377, London, ISBN: 0580180301, p. 42.

Deboucha, S., Hashim, R. & Alwi, A. 2008. Engineering properties of stabilized tropical peat soils. Electronic Journal of Geotechnical Engineering 13(E): 1-9.

Deboucha, S. & Hashim, R. 2010. Effect of OPC and PFA cement on stabilized peat bricks. International Journal of the Physical Sciences 5(11): 1671-1677.

Deboucha, S. & Hashim, R. 2009. Durability and swelling of tropical stabilized peat soils. Journal of Applied Sciences 9(13): 2480-2484.

Department of Irrigation & Drainage Sarawak (DIDS). 2008. http://www.did.sarawak.gov.my.

Duraisamy, Y., Huat, B.B.K. & Muniandy, R. 2009. Compressibility behaviour of fibrous peat reinforced with cement columns. Geotechnical and Geological Engineering 27: 619-629.

Duraisamy, Y., Huat, B.B.K. & Aziz, A.A. 2007. Engineering properties and compressibility behaviour of tropical peat soil. American Journal of Applied Sciences 4(10): 768-773.

Eriktius, D.T., Leong, E.C. & Rahardjo, H. 2001. Shear strength of peaty soil-cement mixes. Proceedings of 3rd International Conference on Soft Soil Engineering, Hong Kong. pp. 551- 556.

Hartlen, J. & Wolski, W. 1996. Embankments on Organic Soils. 1st ed. Amsterdam: Elsevier Science.

Hashim, R. & Islam, S. 2008a. A model study to determine engineering properties of peat soil and effect on strength after stabilisation. European Journal of Scientific Research 22(2): 205-215.

Hashim, R. & Islam, S. 2008b. Engineering properties of peat soils in Peninsular, Malaysia. Journal of Applied Sciences 8(22): 4215-4219.

Huat, B.B.K., Asadi, A. & Kazemian, S. 2009. Experimental investigation on geomechanical properties of tropical organic soils and peat. American Journal of Engineering and Applied Sciences 2(1): 184-188.

Huat, B.B.K., Maail, S. & Mohamed, T.A. 2005. Effect of chemical admixtures on the engineering properties of tropical peat soils. American Journal of Applied Sciences 2(7): 1113-1120.

Islam, M.S. & Hashim, R. 2008. Use of mackintosh probe test for field investigation in peat soil. Proceedings of the International Conference, May 26-27, Best Western Premier Seri Pacific Kuala Lumpur, Malaysia. p. 27.

Jayawardane, D.L.N.B., Ukwatta, U.P.A.S., Weerakoon, W.M.N.R. & Pathirana, C.K. 2012. Physical and chemical properties of fly ash based Portland pozzolana cement. Civil Engineering Research Exchange Symposium 2012, University of Ruhuna, India. pp. 8-11.

Kalantari, B. & Prasad, A. 2014. A study of the effect of various curing techniques on the strength of stabilized peat. Transportation Geotechnics 1: 119-128.

Kaya, Z., Cayabatmaz, S., Kara, H.B. & Uncuoglu, E. 2013. Determination of the properties of Kayseri peat. Proceedings of 2nd International Balkan Conference on Challenges of Civil Engineering, 23-25 May, Epoka University Tirana Albania. pp. 882-889.

Kolay, P.K., Sii, H.Y. & Taib, S.N.L. 2011. Tropical peat soil stabilization using class F pond ash from coal fired power plant. International Journal of Civil and Environmental Engineering 3(2): 79-83.

Kolay, P.K. & Pui, M.P. 2010. Peat stabilization using gypsum and fly ash. Journal of Civil Engineering, Science and Technology 1: 2.

Landva, A.O. & Pheeney, P.E. 1980. Peat fabric and structure. Canadian Geotechnical Journal 17(3): 416-435.

Lo, S.R. & Wardani, S.P.R. 2002. Strength and dilatancy of stabilized by cement and fly ash mixture. Canadian Geotechnical Journal 39(1): 77-89.

Lorenzo, A.L. & Bergado, D.T. 2004. Fundamental parameters of cement-admixed clay-new approach. Journal of Geotechnical and Geoenvironmental Engineering 130(10): 1042-1050.

Melling, L., Ambak, K., Osman, J. & Husni, A. 1999. Water management for the sustainable utilisation of peat soils for agriculture. International Conference & Workshop on Tropical Peat Swamps, 27-29 July, Penang, Malaysia.

Mohidin, M.N., Zainorabdin, A., Madun, A., Yusof, M.F., Mokhtar, M. & Chew, Y.F. 2007. Some index properties on Rengit peat soil stabilize with cement-lime. Prosiding Kebangsaan Awam 07, 29-31 May, Langkawi Malaysia.

Mutert, E., Fairhurst, T.H. & von Uekῠll, H.R. 1999. Agronomic management of oil palm on deep peat. Better Crops International 13(1): 22-27.

Nontananandh, S., Thakon, Y. & Sanupong, B. 2002. Scanning electron microscopic investigation of cement stabilized soil. Proceedings of the 8th National Convention of Civil Engineering 2: 120-125.

Sariosseiri, F. & Muhunthan, B. 2009. Effect of cement treatment on geotechnical properties of some Washington State soils. Engineering Geology 104: 119-125.

Shamshuddin Jusop. 1981. Asas Sains Tanih. Kuala Lumpur: Dewan Bahasa dan Pustaka.

Silvius, M. 2007. Palm oil expansion could boos carbon: The growing use of palm oil for biofuels production is often in conflict with environmental concerns. Bioenergy Business 1: 14-15.

Skempton, A.W. & Petley, D.J. 1970. Ignition loss and otherproperties of peats and clays from Avonmouth, King’s Lynnand Cranberry Moss. Géotechnique 20(4): 343-356.

Sowers, G.F. 1979. Introductory Soil Mechanics and Foundations. 4th ed. New York: Macmillan. p. 621.

Tang, B.L., Bakar, I. & Chan, C.M. 2011. Reutilization of organic and peat soils by deep cement mixing. World Academy of Science, Engineering and Technology 50: 674-679.

Teja, P.R.K., Suresh, K. & Uday, K.V. 2015. Effect of curing time on behaviour and engineering properties of cement treated soils. International Journal of Innovation Research in Science, Engineering and Technology 4(6): 4649-4657.

van Impe, W. 1989. Soil Improvement Techniques and Their Evolution. London: Taylor & Francis.

Von Post, L. 1922. SGU peat inventory and some preliminary results. Svenska Mosskulturføreningens Tidsskrift 36: 1-27.

Wetlands International. 2010. A Quick Scan of Peatlands in Malaysia. Petaling Jaya, Malaysia: Wetlands International- Malaysia. p. 50.

Whitlow, R. 2001. Basic Soil Mechanics. 4th ed. Harlow, Essex, UK: Prentice Hall.

Wong, L.S., Hashim, R. & Ali, F.H. 2008. Behaviour of stabilized peat soils in unconfined compression tests. American Journal of Engineering and Applied Sciences 1(4): 274-279.

Zukri, A. 2013. Pekan soft clay treated with hydrated lime as a method of soil stabilizer. Malaysian Technical Universities Conference on Engineering & Technology 2012, MUCET 2012, Part 3 - Civil and Chemical Engineering. Procedia Engineering 53: 37-41.

 

 

*Corresponding author; email: fahmirina@gmail.com

 

 

 

 

 

previous