Sains Malaysiana 45(11)(2016): 1689–1696
Generation, Characterization and
Application of Atmospheric Pressure Plasma Jet
(Penjanaan, Pencirian dan Aplikasi
Jet Plasma Bertekanan Atmosfera)
R. SHRESTHA1,2,
D.P.
SUBEDI1,
J.P.
GURUNG1
& C.S. WONG3*
1Department of Natural
Science, Kathmandu University, Dhulikhel,
Nepal
2Department of Physics,
Nepal Banepa Polytechnic College, Banepa, Kavre, Nepal
3Plasma Technology
Research Centre, Physics Department, University of Malaya
50603 Kuala Lumpur,
Federal Territory, Malaysia
Received: 1 June
2015/Accepted: 29 March 2016
ABSTRACT
The development of a non-thermal
plasma jet with a capillary configuration working at atmospheric
pressure is reported in this paper. The plasma jet is powered
by a power source with frequency of several kilohertz. The working
gas is argon. The plasma obtained has been characterized by optical
emission spectroscopic measurements and electrical measurements
of the discharge using voltage and current probes. The electron
temperature has been estimated by using the modified Boltzmann
plot method utilizing the Ar 4p-4s transition.
The electron temperatures at various positions along the plasma
jet length have been obtained and it is found that the electron
temperature decreases at position further from orifice. The electron
density has been estimated from current and voltage measurements
using the power balance method. The effects of gas flow rate,
applied voltage and frequency on the characteristics of the plasma
jet have also been investigated. The applications of the atmospheric
pressure plasma jet (APPJ) developed to modify the surface
properties of Polyethyleneterephthalate
(PET)
and polycarbonate (PC) have been tested. Our
results showed that the atmospheric pressure non-thermal plasma
jet can be effectively used to enhance the surface wettability
and surface energy of the PET
and PC.
The plasma jet has also been tested for inactivation of prokaryotic
cells (Escherichia coli, Staphylococcus aureus). In
the case of E. coli, better than 4 log10 reduction
can be achieved. The effect of plasma jet on the pH of
cell culture medium has suggested that the plasma species, particularly
the electrons, are solely responsible for the effect of inactivation
of living cells.
Keywords: Electron density;
electron temperature; optical emission spectroscopy; plasma jet
ABSTRAK
Kertas ini membincangkan pembangunan jet plasma bukan terma yang mempunyai konfigurasi kapilari dan beroperasi dengan tekanan atmosfera. Jet plasma ini
dikuasakan oleh
suatu sumber kuasa
berfrekuensi beberapa
kilohertz. Gas yang digunakan
adalah argon. Plasma
yang dihasilkan telah dicirikan dengan menggunakan ukuran spektroskopi pancaran optik dan elektrik
dengan menggunakan
penduga voltan dan arus. Suhu elektron telah
dianggarkan dengan
kaedah ubah suai
plot Boltzmann yang menggunakan peralihan
Ar 4p-4s. Suhu
elektron pada beberapa
kedudukan di sepanjang
jet plasma telah diambil
dan suhu elektron
didapati berkurang
pada kedudukan yang lebih jauh dari
orifis. Ketumpatan elektron telah
dianggarkan daripada
ukuran arus voltan
menggunakan kaedah
kuasa imbangan. Kesan kadar
aliran gas, voltan
yang digunakan serta ciri jet plasma juga telah dikaji. Aplikasi jet plasma bertekanan atmosfera (APPJ)
yang dibangunkan untuk
mengubah ciri permukaan
polietilenatereftalat (PET)
dan polikarbonat (PC)
telah diuji. Keputusan
menunjukkan bahawa
jet plasma bertekanan atmosfera
bukan terma
boleh digunakan dengan berkesan untuk meningkatkan kebolehbasahan permukaan dan tenaga permukaan
PET
dan PC.
Jet plasma ini juga telah
diuji untuk
pentakaktifan sel prokariot (Escherichia coli,
Staphylococcus aureus). Untuk E.
coli, pengurangan melebihi
4 log10 boleh dicapai.
Kesan jet plasma kepada
nilai pH medium sel kultur telah
mencadangkan bahawa
spesies plasma, terutamanya elektron, bertanggungjawab sepenuhnya untuk kesan pentakaktifan sel hidup.
Kata kunci: Jet plasma; ketumpatan elektron; spektroskopi pancaran optik; suhu electron
REFERENCES
Bekeschus, S., Masur,
K., Kolata, J., Wende,
K., Schmidt, A., Bundscherer, L., Barton,
A., Kramer, A., Broker, B. & Human, K. 2013. Mononuclear cell
survival and proliferation is modulated by cold atmospheric plasma
jet. Weltmann, Plasma Process.
Polym. 10: 706-713.
Goree, J.,
Liu, B., Drake, D. & Stoffels, E.
2006. Killing of S. mutans bacteria using
a plasma needle at atmospheric pressure. IEEE Transactions
on Plasma Science 34(4): 1317-1324.
Hofmann, S., van
Gessel, A.F.H., Verreycken,
T. & Bruggeman, P.
2011. Power dissipation, gas temperatures and
electron densities of cold atmospheric pressure helium and argon
RF plasma jets. Plasma Sources Sci.
Technol. 20: 065010.
Jiang,
N., Ji, A. & Cao, Z. 2009. Atmospheric pressure plasma jet: Effect
of electrode configuration, discharge behavior, and its formation
mechanism. Journal of Applied Physics 106: 013308.
Joh,
H.M., Kim, S.J., Chung, T.H. & Leem,
S.H. 2013. Comparison of
the characteristics of atmospheric pressure plasma jets using
different working gases and applications to plasma-cancer cell
interaction. AIP Advances 3: 092128.
Keidar,
M., Shashurin, A., Volotskova,
O., Stepp, M.A., Srinivasan, P., Sandler,
A. & Trink, B. 2013. Cold atmospheric plasma
in cancer therapy. Physics of Plasmas 20: 057101.
Kim,
K., Choi, J.D., Hong, Y.C., Kim, G., Noh, E.J., Lee, J.S. &
Yang, S.S. 2011.
Atmospheric-pressure plasma-jet from micro-nozzle array and its
biological effects on living cells for cancer therapy. Applied
Physics Letters 98: 073701.
Kong, M.G., Kroesen, G., Morfill, G., Nosenko, T., Shimizu, T., Van Dijk,
J. & Zimmermann, J.L. 2009. Plasma medicine: An introductory
review. New J. Phys. 11: 115012.
Laroussi,
M., Kong, M., Morfill, G. & Stolz,
W. 2012.
Plasma Medicine: Applications of Low-Temperature Gas Plasmas
in Medicine and Biology. Cambridge: Cambridge University Press.
Laroussi, M. 2008. The
biomedical application of plasma: A brief history of the development
of a newfield of research. IEEE Trans. Plasma Sci. 36(4):
1612-1614.
Mariotti,
D., Shimizu, Y., Sasaki, T. & Koshizaki,
N. 2007. Gas temperature
and electron temperature measurements by emission spectroscopy
for an atmospheric microplasma. Journal
of Applied Physics 101: 013307.
Nastuta,
A.V., Pohoata, V. & Topala,
I. 2013.
Atmospheric pressure plasma jet-living tissue interface: Electrical,
optical, and spectral characterization. Journal of Applied
Physics 113: 183302.
Qian,
M., Ren, C., Wang, D., Zhang, J. & Wei, G. 2010. Stark broadening measurement of the electron density in an atmosphericpressure argon plasma jet with double-power electrodes.
Journal of Applied Physics 107: 063303.
Raheem,
H. & Mahmood, M.A. 2013. Deactivation of Staphylococcus aureus
and Escherichia coli using plasma needle at atmospheric
pressure. International Journal of Current Engineering and
Technology 3(5)(Dec 2013): 1848-1851.
Sarani,
A., Nikiforov, A.Y. & Leys, C. 2010. Atmospheric pressure
plasma jet in Ar and Ar/H2O mixtures: Optical emission spectroscopy
and temperature measurements. Physics of Plasmas 17: 063504.
Schuetze,
A., Jeong, J.Y., Babayan, S.E., Park,
J., Selwyn, G.S. & Hicks, R.F. 1998. The atmospheric-pressure plasma jet: A
review and comparison to other plasma sources. IEEE Transactions
on Plasma Science 26(6): 1685-1698.
Subedi,
D.P., Tyata, R.B., Shrestha, R. &
Wong, C.S. 2014.
An experimental study of atmospheric pressure
dielectric barrier discharge (DBD) in argon. AIP Conference
Proceeding 1588: 103-108.
Shrestha,
R., Gurung, J.P., Subedi,
D.P. & Wong, C.S. 2015, Atmospheric pressure single electrode
argon plasma jet for biomedical applications. International Journal of Emerging Technology
and Advanced Engineering 5(11): 193-198.
Tyata,
R.B., Subedi, D.P., Shrestha, R. &
Wong, C.S. 2013.
Generation of uniform atmospheric pressure argon
glow plasma by dielectric barrier discharge. Pramana-Journal
of Physics 80(3): 507-517.
Weltmann,
K.D., Von Woedtke, T., Brandenburg,
R. & Ehlbeck, J. 2008. Biomedical applications
of atmospheric pressure plasma chem. II Central European Symposium
on Plasma. Chem. Listy
102: s1450-s1451.
Wu, S., Wang, Z.,
Huang, Q., Tan, X., Lu, X. & Ostrikov,
K. 2013. Atmospheric-pressure plasma jets: Effect of gas flow,
active species, and snake-like bullet propagation. Physics
of Plasmas 20: 023503.
Xiong,
Q., Nikiforov, A.Y., Gonzalez, M.A.,
Leys, C. & Lu, X.P. 2013.
Characterization of an atmospheric helium plasma
jet by relative and absolute optical emission spectroscopy.
Plasma Sources Sci. Technol. 22: 015011.
Yanguas-Gil,
A., Focke, K., Benedikt,
J. & Keudell, A.V. 2007. Optical and electrical characterization of an atmospheric pressure
microplasma jet for Ar/CH4 and Ar/C2H2 mixtures. Journal of Applied Physics
101: 103307.
Ying,
J., Chunsheng, R., Liang, Y., Jialiang,
Z. & Dezhen, W. 2013. Atmospheric pressure
plasma jet in Ar and O2/ Ar
mixtures: Properties and high performance for surface cleaning.
Plasma Science and Technology 15(12): 1203-1208.
Yuji,
T., Suzaki, Y., Yamawaki,
T., Sakaue, H. & Akatsuka,
H. 2007.
Experimental study of temperatures of atmospheric-pressure nonequilibrium
Ar/N2 plasma jets and poly(ethylene terephtalate)-surface
processing. Japanese Journal of Applied Physics 46(2):
795-798.
Zhang, Q., Sun,
P., Feng, H., Wang, R., Liang, Y., Zhu, W., Becker, K.H., Zhang,
J. & Fang, J. 2012. Assessment of the roles
of various inactivation agents in an argon-based direct current
atmospheric pressure cold plasma jet. Journal of Applied
Physics 111: 123305.
*Corresponding author; email: cswong@um.edu.my