Sains Malaysiana 45(11)(2016):
1697–1705
Studies of Ion Transport and Electrochemical
Properties of Plasticized Composite
Polymer Electrolytes
(Kajian Pengangkutan Ion dan Sifat Elektrokimia
Komposit Pemplastik Polimer Elektrolit)
D. HAMBALI1,2,
Z.
ZAINUDDIN1,2,
I.
SUPA’AT3
& Z. OSMAN1*
1Centre for Ionics,
University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia
2Department of Physics,
University of Malaya, 50603 Kuala Lumpur, Federal Territory,
Malaysia
3Centre for Foundation
Studies in Sciences, University of Malaya, 50603 Kuala Lumpur,
Federal Territory,
Malaysia
Received: 7 November
2015/Accepted: 29 March 2016
ABSTRACT
The composite polymer electrolytes
(CPEs) composed of polyacrylonitrile (PAN)
as host polymer, lithium tetraflouroborate (LiBF4) as
dopant salt, dissoÅlved in the mixture of ethylene carbonate (EC)
and dimethyl phthalate (DMP) as plasticizing solvent, with the
addition of silica (SiO2) as inorganic filler were
prepared by the solution casting technique. The CPE films
were prepared by varying the concentrations of SiO2 from
1 to 5 wt. %. The CPE film containing 3 wt. % of SiO2 exhibits
the highest ionic conductivity of 1.36 × 10-2 S
cm-1 at room temperature while for
temperature dependence studies, the plot obtained obeyed Arrhenius
rule and the calculated activation energy was 0.11 eV. The ionic
conductivity of the CPEs
was found to depend on the concentration of ion pairs of dopant
salt as showed by FTIR spectra. The calculated value of lithium ions transport
number, tLi+ for the highest conducting CPE
film was 0.15. This result indicates that anionic
species are the main contributor to the total conductivity of
the CPE. The CPE film
has an electrochemical stability higher than the non-filler film.
Keywords: Composite polymer
electrolytes; conductivity; FTIR; lithium tetraflouroborate;
PAN
ABSTRAK
Komposit polimer elektrolit
(CPEs)
yang terdiri daripada poliakrilonitril (PAN) sebagai hos polimer, litium
tetrafloroborat (LiBF4) sebagai garam pendop telah
larutkan di dalam campuran etilina karbonat (EC)
dan dimetil ftalat (DMP) sebagai pelarut pemplastik, dengan
silika (SiO2) sebagai filer tak organik, telah
disediakan melalui kaedah tuangan larutan. Filem CPE telah
disediakan dengan pelbagai kandungan SiO2 dari 1 hingga 5 % bt. Filem
CPE yang mengandungi 3 % bt. SiO2 memberikan
nilai kekonduksian pada suhu yang bilik tertinggi iaitu 1.36 ×
10-2 S
cm-1. Kekonduksian bagi CPEs
didapati bergantung kepada kandungan pasangan ion daripada garam
pendop seperti yang ditunjukkan oleh spektra FTIR. Nilai bagi nombor pengangkutan
ion litium, tLi+ untuk CPE filem
dengan kekonduksian tertinggi adalah 0.15. Keputusan ini menunjukkan
spesies anion adalah penyumbang utama kepada kekonduksian CPE.
Filem CPE mempunyai kestabilan elektrokimia lebih tinggi daripada
filem tanpa filer.
Kata kunci: FTIR; kekonduksian;
komposit polimer elektrolit; litium tetrafloroborat; PAN
REFERENCES
Abraham,
K.M., Jiang, Z. & Carroll, B. 1997. Highly conductive PEO-like
polymer electrolytes. Chemistry of Materials 9(9): 1978-1988.
Adnan,
S.B.R.S. & Mohamed, N.S. 2014. Properties of novel Li4-3xCrxSiO4
ceramic electrolyte. Ceramics International 40(3): 5033-5038.
Agrawat,
R.C. & Mahipal, T.K. 2011. Study of electrical and electrochemical
behaviour on hot-press synthesized nano-composite polymer electrolyte
(NCPE) membranes: [(70PEO: 30 KNO3) + X SiO2.
International Journal of Electrochemical Science 6: 867-881.
Ahmad,
A., Rahman, M.Y.A. & Su’ait, M.S. 2008. Preparation and characterization
of PVC-LiClO4 based composite polymer electrolyte.
Physica B: Condensed Matter 403(21- 22): 4128-4131.
Armand,
M.B., Chabagno, J.M. & Duclot, M. 1979. Fast Ion Transport
in Solids, edited by Vahisha, P., Mundy, J.N. & Shenoy,
G.K. North Holland, New York: Elsevier.
Chen-Yang,
Y.W., Chen, Y.T., Chen, H.C., Lin, W.T. & Tsai, C.H. 2009.
Effect of the addition of hydrophobic clay on the electrochemical
property of polyacrylonitrile/LiClO4 polymer
electrolytes for lithium battery. Polymer 50(13): 2856-2862.
Choe,
H.S., Carroll, B.G., Pasquariello, D.M. & Abraham, K.M. 1997.
Characterization of some polyacrylonitrile-based electrolytes
9(1): 367-379.
Chong,
W.G. & Osman, Z. 2014. The effect of carbonate-phthalate plasticizers
on structural, morphological and electrical properties of polyacrylonitrile-based
solid polymer electrolytes. Journal of Polymer Research 21(3):
381.
Evans,
J., Vincent, C.A. & Bruce, P.G. 1987. Electrochemical measurement
of transference numbers in polymer electrolytes. Polymer 28(13):
2324-2328.
Fenton, D.E., Parker, J.M. & Wright, P.V. 1973. Complexes of
alkali metal ions with poly(ethylene oxide). Polymer 14(11):
589.
Gadjourova, Z., Andreev, Y.G., Tunstall, D.P. & Bruce, P.G.
2001. Ionic conductivity in crystalline polymer electrolytes.
Letters to Nature 412: 520-523.
Hema, M., Selvasekerapandian,
S., Sakunthala, A., Arunkumar, D. & Nithya, H. 2008. Structural,
vibrational and electrical characterization of PVA - NH 4 Br polymer
electrolyte system. Physica B: Condensed Matter 403(17):
2740-2747.
Imperiyka, M.,
Ahmad, A., Hanifah, S.A., Mohamed, N.S. & Rahman, M.Y.A. 2014.
Investigation of plasticized UV-curable glycidyl methacrylate
based solid polymer electrolyte for photoelectrochemical cell
(PEC) application. International Journal of Hydrogen Energy
39(6): 3018-3024.
Md Isa, K.B., Othman,
L. & Osman, Z. 2011. Comparative studies on plasticized and
unplasticized polyacrylonitrile (PAN) polymer electrolytes containing
lithium and sodium salts. Sains Malaysiana 40(7): 695-700.
Jayathilaka, P.A.R.D.,
Dissanayake, M.A.K.L., Albinssom, I. & Mellandar, B.E. 2002.
Effect of nano-porous Al2O3 on thermal,
dielectric and transport properties of the (PEO)9LiTFSI polymer
electrolyte system. Electrochimica Acta 47: 3257-3628.
Kumar, B. 2004.
From colloidal to composite electrolytes: Properties, peculiarities,
and possibilities. Journal of Power Sources 135(1-2): 215-231.
Kumar, D. &
Hashmi, S.A. 2010. Ion transport and ion-filler-polymer interaction
in poly(methyl Methacrylate)-based, sodium ion conducting, gel
polymer electrolytes dispersed with silica nanoparticles. Journal
of Power Sources 195(15): 5101-5108.
Lee, K.H., Lee,
Y.G., Park, J.K. & Seung, D.Y. 2000. Effect of silica on the
electrochemical characteristics of the plasticized polymer electrolytes
based on the P(AN-Co-MMA) copolymer. Solid State Ionics 133(3-4):
257-263.
Souquet, J.L.,
Levy, M. & Duclot, M. 1994. A single microscopic approach
for ionic transport in glassy and polymer electrolytes. Solid
State Ionics 70-71(1): 337-345.
Manuel Stephan,
A. & Nahm, K.S. 2006. Review on composite polymer electrolytes
for lithium batteries. Polymer 47(16): 5952-5964.
Osman, Z., Md Isa,
K.B., Ahmad, A. & Othman, L. 2010. A comparative study of
lithium and sodium salts in PAN-based ion conducting polymer electrolytes.
Ionics 16(5): 431-435.
Othman, L., Md
Isa, K.B., Osman, Z. & Yahya, R. 2013. Ionic conductivity,
morphology and transport number of lithium ions in PMMA based
gel polymer electrolytes. Defect and Diffusion Forum 334-335:
137-142.
Othman, L., Chew,
K.W. & Osman, Z. 2007. Impedance spectroscopy studies of poly(methyl
methacrylate)-lithium salts polymer electrolyte systems. Ionics
13: 337-342.
Pandey, G.P. &
Hashmi, S.A. 2009. Experimental investigations of an ionic-liquid-based,
magnesium ion conducting, polymer gel electrolyte. Journal
of Power Sources 187(2): 627-634.
Rajendran, S.,
Babu, R.S. & Sivakumar, P. 2008. Investigations on PVC/PAN
composite polymer electrolytes. Journal of Membrane Science
315(1-2): 67-73.
Rajendran, S.,
Sivakumar, M. & Subadevi, R. 2004. Investigations on the effect
of various plasticizers in PVA - PMMA solid polymer blend electrolytes.
Materials Letters 58: 641-649.
Rajendran, S.,
Mahendran, O. & Kannan. R. 2002a. Ionic conductivity studies
in composite solid polymer electrolytes based on methylmethacrylate.
Journal of Physics and Chemistry of Solids 63(2): 303-307.
Rajendran, S.,
Mahendran, O. & Mahalingam, T. 2002b. Thermal and ionic conductivity
studies of plasticized PMMA/PVdF blend polymer electrolytes. European
Polymer Journal 38(1): 49-55.
Ramesh, S. &
Lu, S.C. 2008. Effect of nanosized silica in poly(methyl methacrylate)-lithium
bis(trifluoromethanesulfonyl)imide based polymer electrolytes.
Journal of Power Sources 185(2): 1439-1443.
Scrosati, B. &
Garche, J. 2010. Lithium batteries: Status, prospects and future.
Journal of Power Sources 195(9): 2419-2430.
Shin, J.H. &
Passerini, S. 2004. Effect of fillers on the electrochemical and
interfacial properties of PEO-LiN(SO2CF2CF3)2
polymer electrolytes. Electrochimica Acta 49(9-10): 1605-1612.
Suthanthiraraj,
S.A., Kumar, R. & Paul, B.J. 2009. FT-IR spectroscopic investigation
of ionic interactions in PPG 4000: AgCF3SO3
polymer electrolyte. Spectrochimica Acta. Part A, Molecular
and Biomolecular Spectroscopy 71(5): 2012-2015.
Watanabe, M., Kanba,
M., Nagaoka, K. & Shinohara, I. 1983. Ionic conductivity of
hybrid films composed of polyacrylonitrile, ethylene carbonate,
and LiClO4. Journal of Polymer Science Part B: Polymer
Physics Edition 21: 939-948.
Yang, C.M., Kim,
H.S., Na, B.K., Kum, K.S. & Cho, B.W. 2006. Gel-type polymer
electrolytes with different types of ceramic fillers and lithium
salts for lithium-ion polymer batteries. Journal of Power Sources
156(2): 574-580.
Yoon, H.K., Chung,
W.S. & Jo, N.J. 2004. Study on ionic transport mechanism and
interactions between salt and polymer chain in PAN based solid
polymer electrolytes containing LiCF3SO3.
Electrochimica Acta 50: 289-293.
Zainol, N.H., Samin,
S.M., Othman, L., Md Isa, K.B., Chong, W.G. & Osman, Z. 2013.
Magnesium ion-based gel polymer electrolytes: Ionic conduction
and infrared spectroscopy studies. International
Journal of Electrochemical Science 8: 3602-3614.
*Corresponding author; email: zurinaosman@um.edu.my