Sains Malaysiana 45(11)(2016): 1697–1705

 

Studies of Ion Transport and Electrochemical Properties of Plasticized Composite

Polymer Electrolytes

(Kajian Pengangkutan Ion dan Sifat Elektrokimia Komposit Pemplastik Polimer Elektrolit)

 

D. HAMBALI1,2, Z. ZAINUDDIN1,2, I. SUPA’AT3 & Z. OSMAN1*

 

1Centre for Ionics, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

2Department of Physics, University of Malaya, 50603 Kuala Lumpur, Federal Territory,

Malaysia

 

3Centre for Foundation Studies in Sciences, University of Malaya, 50603 Kuala Lumpur,

Federal Territory, Malaysia

 

Received: 7 November 2015/Accepted: 29 March 2016

 

ABSTRACT

The composite polymer electrolytes (CPEs) composed of polyacrylonitrile (PAN) as host polymer, lithium tetraflouroborate (LiBF4) as dopant salt, dissoÅlved in the mixture of ethylene carbonate (EC) and dimethyl phthalate (DMP) as plasticizing solvent, with the addition of silica (SiO2) as inorganic filler were prepared by the solution casting technique. The CPE films were prepared by varying the concentrations of SiO2 from 1 to 5 wt. %. The CPE film containing 3 wt. % of SiO2 exhibits the highest ionic conductivity of 1.36 × 10-2 S cm-1 at room temperature while for temperature dependence studies, the plot obtained obeyed Arrhenius rule and the calculated activation energy was 0.11 eV. The ionic conductivity of the CPEs was found to depend on the concentration of ion pairs of dopant salt as showed by FTIR spectra. The calculated value of lithium ions transport number, tLi+ for the highest conducting CPE film was 0.15. This result indicates that anionic species are the main contributor to the total conductivity of the CPE. The CPE film has an electrochemical stability higher than the non-filler film.

 

Keywords: Composite polymer electrolytes; conductivity; FTIR; lithium tetraflouroborate; PAN

 

ABSTRAK

Komposit polimer elektrolit (CPEs) yang terdiri daripada poliakrilonitril (PAN) sebagai hos polimer, litium tetrafloroborat (LiBF4) sebagai garam pendop telah larutkan di dalam campuran etilina karbonat (EC) dan dimetil ftalat (DMP) sebagai pelarut pemplastik, dengan silika (SiO2) sebagai filer tak organik, telah disediakan melalui kaedah tuangan larutan. Filem CPE telah disediakan dengan pelbagai kandungan SiO2  dari 1 hingga 5 % bt. Filem CPE yang mengandungi 3 % bt. SiO2 memberikan nilai kekonduksian pada suhu yang bilik tertinggi iaitu 1.36 × 10-2 S cm-1. Kekonduksian bagi CPEs didapati bergantung kepada kandungan pasangan ion daripada garam pendop seperti yang ditunjukkan oleh spektra FTIR. Nilai bagi nombor pengangkutan ion litium, tLi+ untuk CPE filem dengan kekonduksian tertinggi adalah 0.15. Keputusan ini menunjukkan spesies anion adalah penyumbang utama kepada kekonduksian CPE. Filem CPE mempunyai kestabilan elektrokimia lebih tinggi daripada filem tanpa filer.

 

Kata kunci: FTIR; kekonduksian; komposit polimer elektrolit; litium tetrafloroborat; PAN

REFERENCES

Abraham, K.M., Jiang, Z. & Carroll, B. 1997. Highly conductive PEO-like polymer electrolytes. Chemistry of Materials 9(9): 1978-1988.

Adnan, S.B.R.S. & Mohamed, N.S. 2014. Properties of novel Li4-3xCrxSiO4 ceramic electrolyte. Ceramics International 40(3): 5033-5038.

Agrawat, R.C. & Mahipal, T.K. 2011. Study of electrical and electrochemical behaviour on hot-press synthesized nano-composite polymer electrolyte (NCPE) membranes: [(70PEO: 30 KNO3) + X SiO2. International Journal of Electrochemical Science 6: 867-881.

Ahmad, A., Rahman, M.Y.A. & Su’ait, M.S. 2008. Preparation and characterization of PVC-LiClO4 based composite polymer electrolyte. Physica B: Condensed Matter 403(21- 22): 4128-4131.

Armand, M.B., Chabagno, J.M. & Duclot, M. 1979. Fast Ion Transport in Solids, edited by Vahisha, P., Mundy, J.N. & Shenoy, G.K. North Holland, New York: Elsevier.

Chen-Yang, Y.W., Chen, Y.T., Chen, H.C., Lin, W.T. & Tsai, C.H. 2009. Effect of the addition of hydrophobic clay on the electrochemical property of polyacrylonitrile/LiClO4 polymer electrolytes for lithium battery. Polymer 50(13): 2856-2862.

Choe, H.S., Carroll, B.G., Pasquariello, D.M. & Abraham, K.M. 1997. Characterization of some polyacrylonitrile-based electrolytes 9(1): 367-379.

Chong, W.G. & Osman, Z. 2014. The effect of carbonate-phthalate plasticizers on structural, morphological and electrical properties of polyacrylonitrile-based solid polymer electrolytes. Journal of Polymer Research 21(3): 381.

Evans, J., Vincent, C.A. & Bruce, P.G. 1987. Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28(13): 2324-2328.

Fenton, D.E., Parker, J.M. & Wright, P.V. 1973. Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14(11): 589.

Gadjourova, Z., Andreev, Y.G., Tunstall, D.P. & Bruce, P.G. 2001. Ionic conductivity in crystalline polymer electrolytes. Letters to Nature 412: 520-523.

Hema, M., Selvasekerapandian, S., Sakunthala, A., Arunkumar, D. & Nithya, H. 2008. Structural, vibrational and electrical characterization of PVA - NH 4 Br polymer electrolyte system. Physica B: Condensed Matter 403(17): 2740-2747.

Imperiyka, M., Ahmad, A., Hanifah, S.A., Mohamed, N.S. & Rahman, M.Y.A. 2014. Investigation of plasticized UV-curable glycidyl methacrylate based solid polymer electrolyte for photoelectrochemical cell (PEC) application. International Journal of Hydrogen Energy 39(6): 3018-3024.

Md Isa, K.B., Othman, L. & Osman, Z. 2011. Comparative studies on plasticized and unplasticized polyacrylonitrile (PAN) polymer electrolytes containing lithium and sodium salts. Sains Malaysiana 40(7): 695-700.

Jayathilaka, P.A.R.D., Dissanayake, M.A.K.L., Albinssom, I. & Mellandar, B.E. 2002. Effect of nano-porous Al2O3 on thermal, dielectric and transport properties of the (PEO)9LiTFSI polymer electrolyte system. Electrochimica Acta 47: 3257-3628.

Kumar, B. 2004. From colloidal to composite electrolytes: Properties, peculiarities, and possibilities. Journal of Power Sources 135(1-2): 215-231.

Kumar, D. & Hashmi, S.A. 2010. Ion transport and ion-filler-polymer interaction in poly(methyl Methacrylate)-based, sodium ion conducting, gel polymer electrolytes dispersed with silica nanoparticles. Journal of Power Sources 195(15): 5101-5108.

Lee, K.H., Lee, Y.G., Park, J.K. & Seung, D.Y. 2000. Effect of silica on the electrochemical characteristics of the plasticized polymer electrolytes based on the P(AN-Co-MMA) copolymer. Solid State Ionics 133(3-4): 257-263.

Souquet, J.L., Levy, M. & Duclot, M. 1994. A single microscopic approach for ionic transport in glassy and polymer electrolytes. Solid State Ionics 70-71(1): 337-345.

Manuel Stephan, A. & Nahm, K.S. 2006. Review on composite polymer electrolytes for lithium batteries. Polymer 47(16): 5952-5964.

Osman, Z., Md Isa, K.B., Ahmad, A. & Othman, L. 2010. A comparative study of lithium and sodium salts in PAN-based ion conducting polymer electrolytes. Ionics 16(5): 431-435.

Othman, L., Md Isa, K.B., Osman, Z. & Yahya, R. 2013. Ionic conductivity, morphology and transport number of lithium ions in PMMA based gel polymer electrolytes. Defect and Diffusion Forum 334-335: 137-142.

Othman, L., Chew, K.W. & Osman, Z. 2007. Impedance spectroscopy studies of poly(methyl methacrylate)-lithium salts polymer electrolyte systems. Ionics 13: 337-342.

Pandey, G.P. & Hashmi, S.A. 2009. Experimental investigations of an ionic-liquid-based, magnesium ion conducting, polymer gel electrolyte. Journal of Power Sources 187(2): 627-634.

Rajendran, S., Babu, R.S. & Sivakumar, P. 2008. Investigations on PVC/PAN composite polymer electrolytes. Journal of Membrane Science 315(1-2): 67-73.

Rajendran, S., Sivakumar, M. & Subadevi, R. 2004. Investigations on the effect of various plasticizers in PVA - PMMA solid polymer blend electrolytes. Materials Letters 58: 641-649.

Rajendran, S., Mahendran, O. & Kannan. R. 2002a. Ionic conductivity studies in composite solid polymer electrolytes based on methylmethacrylate. Journal of Physics and Chemistry of Solids 63(2): 303-307.

Rajendran, S., Mahendran, O. & Mahalingam, T. 2002b. Thermal and ionic conductivity studies of plasticized PMMA/PVdF blend polymer electrolytes. European Polymer Journal 38(1): 49-55.

Ramesh, S. & Lu, S.C. 2008. Effect of nanosized silica in poly(methyl methacrylate)-lithium bis(trifluoromethanesulfonyl)imide based polymer electrolytes. Journal of Power Sources 185(2): 1439-1443.

Scrosati, B. & Garche, J. 2010. Lithium batteries: Status, prospects and future. Journal of Power Sources 195(9): 2419-2430.

Shin, J.H. & Passerini, S. 2004. Effect of fillers on the electrochemical and interfacial properties of PEO-LiN(SO2CF2CF3)2 polymer electrolytes. Electrochimica Acta 49(9-10): 1605-1612.

Suthanthiraraj, S.A., Kumar, R. & Paul, B.J. 2009. FT-IR spectroscopic investigation of ionic interactions in PPG 4000: AgCF3SO3 polymer electrolyte. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 71(5): 2012-2015.

Watanabe, M., Kanba, M., Nagaoka, K. & Shinohara, I. 1983. Ionic conductivity of hybrid films composed of polyacrylonitrile, ethylene carbonate, and LiClO4. Journal of Polymer Science Part B: Polymer Physics Edition 21: 939-948.

Yang, C.M., Kim, H.S., Na, B.K., Kum, K.S. & Cho, B.W. 2006. Gel-type polymer electrolytes with different types of ceramic fillers and lithium salts for lithium-ion polymer batteries. Journal of Power Sources 156(2): 574-580.

Yoon, H.K., Chung, W.S. & Jo, N.J. 2004. Study on ionic transport mechanism and interactions between salt and polymer chain in PAN based solid polymer electrolytes containing LiCF3SO3. Electrochimica Acta 50: 289-293.

Zainol, N.H., Samin, S.M., Othman, L., Md Isa, K.B., Chong, W.G. & Osman, Z. 2013. Magnesium ion-based gel polymer electrolytes: Ionic conduction and infrared spectroscopy studies. International Journal of Electrochemical Science 8: 3602-3614.

 

*Corresponding author; email: zurinaosman@um.edu.my

 

 

 

 

previous