Sains Malaysiana 45(12)(2016): 1795–1805

http://dx.doi.org/10.17576/jsm-2016-4512-03

 

Peningkatan Kesensitifan Sensor Al(III) Optik dengan Menggunakan Manik Terkandung Polimer

(Enhancing the Sensitivity of Al(III) Optical Sensor by Utilizing Polymer Inclusion Beads)

 

 

FAIZ BUKHARI MOHD SUAH1,2*, MUSA AHMAD2,3 & LEE YOKE HENG2

 

1Pusat Pengajian Sains Kimia, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia

 

2Pusat Pengajian Sains Kimia dan Teknologi Makanan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia

 

3Fakulti Sains dan Teknologi, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan Darul Khusus, Malaysia

 

Received: 1 February 2014/Accepted: 5 April 2016

 

ABSTRAK

Sensor Al(III) optik berasaskan prinsip pengukuran pantulan dengan menggunakan manik polimer terkandung polimer (PIMs) terpegun telah dibangunkan. Manik PIMs terpegun yang disediakan dalam kajian ini mengandungi manik poli(vinil klorida) (PVC), Aliquat 336, diositil pthalat (DOP) dan reagen eriokrom sianin R (ESR). Sensor yang menggunakan manik PIMs terpegun ini menunjukkan rangsangan yang lebih tinggi berbanding dengan sensor yang tidak menggunakan manik PIMs. Masa rangsangan sensor pula ditetapkan selepas 3 min dengan nilai pH optimum 6.0. Sensor Al(III) optik ini memberikan rangsangan linear pada julat 5.56×10-5 - 3.52×10-4 molL-1, dengan nilai had pengesanan terendah (LOD) yang dikira ialah 3.41×10-5 molL-1. Kajian validasi nilai ion Al(III) bagi beberapa sampel air semula jadi yang ditambah dengan ion Al(III) menggunakan sensor Al(III) optik yang dibangunkan dalam kajian ini, menunjukkan tiada perbezaan secara signifikan pada nilai ion Al(III) yang diperoleh apabila dibandingkan dengan keputusan yang diperoleh menggunakan spektrofotometer serapan atom konvensional.

 

Kata kunci: Aliquat 336; eriokrom sianin R; manik terkandung polimer; penentuan Al(III); sensor Al(III) optik

 

ABSTRACT

An optical Al(III) sensor base on reflectance principle has been developed using polymer inclusion membranes (PIMs) beads. The immobilized PIMs beads are consists of poly(vinyl chloride) (PVC), Aliquat 336, dioctyl phthalate (DOP) and eriochrome cyanine R (ECR) reagent. The sensor which was based on immobilized PIMs beads produced higher response compared to sensor based on non-immobilized PIMs beads. The response time of the sensor was 3 min with an optimum pH value of 6.0. This optical Al(III) sensor gave a linear response at the range of 5.56×10-5 - 3.52×10-4 molL-1, with the limit of detection value 3.41×10-5 molL-1. Validation of Al(III) value in spiked natural water samples by using Al(III) sensor developed in this study showed no significance differences compared with results obtained by using conventional atomic absorption spectrophotometer.

 

Keywords: Aliquat 336; Al(III) determination; eriochome cyanine R; optical Al(III) sensor; polymer inclusion beads

 

REFERENCES

Alabbas, S.H., Ashworth, D.C., Bezzaa, B., Momin, S.A. & Narayanaswamy, R. 1996. Factors affecting the response time of an optical-fibre reflectance pH sensor. Sens. Actuators A 51: 129-134.

Bakker, E., Buhlmann, P. & Pretsch, I. 1997. Carrier based ion-selective electrodes and bulk optodes. 1: General characteristics. Chem. Rev. 97: 3083-3132.

Buhlmann, P., Pretsch, E. & Bakker, E. 1998. Carrier-based ion selective electrodes and bulk optodes. 2. Ionophores for potentiometric and optical sensors. Chem. Rev. 98: 1593- 1687.

Faiz Bukhari Mohd Suah, Musa Ahmad & Mohd Nasir Taib. 2003. Optimisation of the range of an optical fibre pH sensor using feed-forward artificial neural network. Sens. Actuators B 90: 175-181.

Fontas, C., Tayeb, R., Tingry, S., Hidalgo, M. & Seta, P. 2005. Transport of platinum(IV) through supported liquid membrane (SLM) and polymeric plasticized membrane (PPM). J. Membr. Sci. 263: 96-102.

Gibbons, W.S. & Kusy, R.P. 1996. Effects of plasticization on the dielectric properties of poly(vinyl chloride) membranes. Thermochim. Acta 284: 21-45.

Gruenwald, G. 1993. Plastics. How Structure Determines Properties. Berlin: Hanser Publishers.

Janata, J., Josowicz, M., Vanysek, P. & DeVaney, D.M. 1998. Chemical sensors. Anal. Chem. 70: 179R-208R.

Kara, D., Fisher, A. & Hill, S.J. 2007. The sensitive and selective determination of aluminium by spectrofluorimetric detection after complexation with N-o-vanillidine-2-amino-p-cresol. J. Environ. Monit. 9: 994-1000.

Kazi, T.G., Khan, S.B., Baig, J.A., Kolachi, N.F., Afridi, H.I., Kandhro, G.A., Kumar, S. & Shah, A.Q. 2009. Separation and preconcentration of aluminum in parenteral solutions and bottled mineral water using different analytical techniques. J. Hazard. Mater. 172: 780-785.

Levin, G. & Bromberg, L. 1993. Gelled membrane composed of dioctyldithiocarbamate substituted on poly(vinylchloride) and di (2-ethylhexyl) dithiophosphoric acid. J. Appl. Polym. Sci. 48: 335-341.

Luo, M.B. & Bi, S.P. 2003. Solid phase extraction-spectrophotometric determination of dissolved aluminum in soil extracts and ground waters. J. Inorg. Biochem. 97: 173-178.

Marczenko, Z. 1986. Separation and Spectrophotometric Determination of Elements. Chichester: Ellis Horwood Limited.

McDonagh, C., Burke, C.S. & MacCraith, B.D. 2008. Optical chemical sensors. Chem. Rev. 108: 400-422.

Musa Ahmad & Narayanaswamy, R. 2002. Optical fibre Al(III) sensor based on solid surface fluorescence measurement. Sens. Actuators B 81: 259-266.

Musa Ahmad & Narayanaswamy, R. 1995. A flow-cell optosensor for monitoring aluminium(III) based on immobilised eriochrome cyanine R (ECR) and reflectance spectrophotometry. Sci. Tot. Environ. 163: 221-227.

Oehme, I., Prattes, S., Wolfbeis, O.S. & Mohr, G.J. 1998. The effect of polymeric supports and methods of immobilization on the performance of an optical copper(II)-sensitive membrane based on colourimetric reagent Zincon. Talanta 47: 595-604.

Perez, M.D.L.A., Marin, L.P., Quintana, J.C. & Yazdani-Pedram, M. 2003. Influence of different plasticizers on the response of chemical sensors based on polymeric membranes for nitrate ion determination. Sens. Actuators B 89: 262-268.

Preininger, C. & Mohr, G.J. 1997. Fluorosensors for ammonia using rhodamines immobilized in plasticized poly(viny1 chloride) and in sol-gel; a comparative study. Anal. Chim. Acta 342: 207-213.

Rosen, M.J. 2004. Surfactants and Interfacial Phenomena. Edisi ke-3. Hoboken: Wiley.

Seitz, W.R. 1988. Chemical sensors based on immobilized indicators and fiber optics. Crit. Rev. Anal. Chem. 19: 135- 153.

Sodaye, S., Scindia, Y.M., Pandey, A.K. & Reddy, A.V.R. 2007a. Studies on the optimisation of optical response of scintillating optodes. Sens. Actuators B 123: 50-58.

Tabrizi, A.B. 2007. Cloud point extraction and spectrofluorimetric determination of aluminium and zinc in foodstuffs and water samples. Food Chem. 100: 1698-1703.

Wauer, G., Heckemann, H.J. & Koschel, R. 2004. Analysis of toxic aluminium species in natural waters. Microchim. Acta 146: 149-154.

Wolfbeis, O.S. 2005. Materials for fluorescence-based optical chemical sensors. J. Mater. Chem. 15: 2657-2669.

Wolfbeis, O.S. 1991. Fiber Optic Chemical Sensor and Biosensor. Jil. 1 & 2. Boca Raton: CRC Press.

 

 

*Corresponding author; email: fsuah@usm.my

 

 

 

 

previous