Sains Malaysiana 45(12)(2016): 1795–1805
http://dx.doi.org/10.17576/jsm-2016-4512-03
Peningkatan Kesensitifan
Sensor Al(III) Optik dengan Menggunakan Manik Terkandung Polimer
(Enhancing the Sensitivity
of Al(III) Optical Sensor by Utilizing Polymer Inclusion Beads)
FAIZ BUKHARI
MOHD
SUAH1,2*,
MUSA
AHMAD2,3
& LEE YOKE HENG2
1Pusat Pengajian
Sains Kimia, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang,
Malaysia
2Pusat Pengajian
Sains Kimia dan Teknologi Makanan, Fakulti Sains dan Teknologi,
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan,
Malaysia
3Fakulti Sains dan
Teknologi, Universiti Sains Islam Malaysia, Bandar Baru Nilai,
71800 Nilai, Negeri Sembilan Darul Khusus, Malaysia
Received: 1 February
2014/Accepted: 5 April 2016
ABSTRAK
Sensor Al(III) optik berasaskan
prinsip pengukuran pantulan dengan menggunakan manik polimer terkandung
polimer (PIMs) terpegun telah dibangunkan. Manik
PIMs terpegun yang disediakan dalam kajian ini mengandungi
manik poli(vinil klorida) (PVC), Aliquat 336, diositil pthalat
(DOP) dan reagen eriokrom sianin R (ESR).
Sensor yang menggunakan manik PIMs terpegun ini menunjukkan
rangsangan yang lebih tinggi berbanding dengan sensor yang tidak
menggunakan manik PIMs. Masa rangsangan sensor pula ditetapkan selepas 3 min
dengan nilai pH optimum 6.0. Sensor Al(III) optik ini memberikan
rangsangan linear pada julat 5.56×10-5 - 3.52×10-4 molL-1,
dengan nilai had pengesanan terendah (LOD) yang dikira ialah 3.41×10-5
molL-1.
Kajian validasi nilai ion Al(III) bagi beberapa sampel air semula
jadi yang ditambah dengan ion Al(III) menggunakan sensor Al(III)
optik yang dibangunkan dalam kajian ini, menunjukkan tiada perbezaan
secara signifikan pada nilai ion Al(III) yang diperoleh apabila
dibandingkan dengan keputusan yang diperoleh menggunakan spektrofotometer
serapan atom konvensional.
Kata kunci: Aliquat 336; eriokrom
sianin R; manik terkandung polimer; penentuan Al(III); sensor
Al(III) optik
ABSTRACT
An optical Al(III) sensor base
on reflectance principle has been developed using polymer inclusion
membranes (PIMs)
beads. The immobilized PIMs beads are consists of poly(vinyl
chloride) (PVC), Aliquat 336, dioctyl phthalate (DOP)
and eriochrome cyanine R (ECR) reagent. The sensor which was based
on immobilized PIMs beads produced higher response compared to
sensor based on non-immobilized PIMs beads. The response time of the
sensor was 3 min with an optimum pH value of 6.0. This optical
Al(III) sensor gave a linear response at the range of 5.56×10-5 -
3.52×10-4 molL-1,
with the limit of detection value 3.41×10-5 molL-1.
Validation of Al(III) value in spiked natural water samples by
using Al(III) sensor developed in this study showed no significance
differences compared with results obtained by using conventional
atomic absorption spectrophotometer.
Keywords: Aliquat 336; Al(III) determination; eriochome cyanine R;
optical Al(III) sensor; polymer inclusion beads
REFERENCES
Alabbas, S.H.,
Ashworth, D.C., Bezzaa, B., Momin, S.A. & Narayanaswamy, R.
1996. Factors affecting the response time of an optical-fibre
reflectance pH sensor. Sens. Actuators A 51: 129-134.
Bakker, E., Buhlmann,
P. & Pretsch, I. 1997. Carrier based ion-selective electrodes
and bulk optodes. 1: General characteristics. Chem. Rev. 97:
3083-3132.
Buhlmann, P., Pretsch,
E. & Bakker, E. 1998. Carrier-based ion selective electrodes
and bulk optodes. 2. Ionophores for potentiometric and optical
sensors. Chem. Rev. 98: 1593- 1687.
Faiz Bukhari Mohd
Suah, Musa Ahmad & Mohd Nasir Taib. 2003. Optimisation of
the range of an optical fibre pH sensor using feed-forward artificial
neural network. Sens. Actuators B 90: 175-181.
Fontas, C., Tayeb,
R., Tingry, S., Hidalgo, M. & Seta, P. 2005. Transport of
platinum(IV) through supported liquid membrane (SLM) and polymeric
plasticized membrane (PPM). J. Membr. Sci. 263: 96-102.
Gibbons, W.S. &
Kusy, R.P. 1996. Effects of plasticization on the dielectric properties
of poly(vinyl chloride) membranes. Thermochim. Acta 284:
21-45.
Gruenwald, G. 1993.
Plastics. How Structure Determines Properties. Berlin:
Hanser Publishers.
Janata, J., Josowicz,
M., Vanysek, P. & DeVaney, D.M. 1998. Chemical sensors. Anal.
Chem. 70: 179R-208R.
Kara, D., Fisher,
A. & Hill, S.J. 2007. The sensitive and selective determination
of aluminium by spectrofluorimetric detection after complexation
with N-o-vanillidine-2-amino-p-cresol. J. Environ. Monit. 9:
994-1000.
Kazi, T.G., Khan,
S.B., Baig, J.A., Kolachi, N.F., Afridi, H.I., Kandhro, G.A.,
Kumar, S. & Shah, A.Q. 2009. Separation and preconcentration
of aluminum in parenteral solutions and bottled mineral water
using different analytical techniques. J. Hazard. Mater. 172:
780-785.
Levin, G. &
Bromberg, L. 1993. Gelled membrane composed of dioctyldithiocarbamate
substituted on poly(vinylchloride) and di (2-ethylhexyl) dithiophosphoric
acid. J. Appl. Polym. Sci. 48: 335-341.
Luo, M.B. &
Bi, S.P. 2003. Solid phase extraction-spectrophotometric determination
of dissolved aluminum in soil extracts and ground waters. J.
Inorg. Biochem. 97: 173-178.
Marczenko, Z. 1986.
Separation and Spectrophotometric Determination of Elements.
Chichester: Ellis Horwood Limited.
McDonagh, C., Burke,
C.S. & MacCraith, B.D. 2008. Optical chemical sensors. Chem.
Rev. 108: 400-422.
Musa Ahmad &
Narayanaswamy, R. 2002. Optical fibre Al(III) sensor based on
solid surface fluorescence measurement. Sens. Actuators B 81:
259-266.
Musa Ahmad &
Narayanaswamy, R. 1995. A flow-cell optosensor for monitoring
aluminium(III) based on immobilised eriochrome cyanine R (ECR)
and reflectance spectrophotometry. Sci. Tot. Environ. 163:
221-227.
Oehme, I., Prattes,
S., Wolfbeis, O.S. & Mohr, G.J. 1998. The effect of polymeric
supports and methods of immobilization on the performance of an
optical copper(II)-sensitive membrane based on colourimetric reagent
Zincon. Talanta 47: 595-604.
Perez, M.D.L.A.,
Marin, L.P., Quintana, J.C. & Yazdani-Pedram, M. 2003. Influence
of different plasticizers on the response of chemical sensors
based on polymeric membranes for nitrate ion determination. Sens.
Actuators B 89: 262-268.
Preininger, C.
& Mohr, G.J. 1997. Fluorosensors for ammonia using rhodamines
immobilized in plasticized poly(viny1 chloride) and in sol-gel;
a comparative study. Anal. Chim. Acta 342: 207-213.
Rosen, M.J. 2004.
Surfactants and Interfacial Phenomena. Edisi ke-3. Hoboken:
Wiley.
Seitz, W.R. 1988.
Chemical sensors based on immobilized indicators and fiber optics.
Crit. Rev. Anal. Chem. 19: 135- 153.
Sodaye, S., Scindia,
Y.M., Pandey, A.K. & Reddy, A.V.R. 2007a. Studies on the optimisation
of optical response of scintillating optodes. Sens. Actuators
B 123: 50-58.
Tabrizi, A.B. 2007.
Cloud point extraction and spectrofluorimetric determination of
aluminium and zinc in foodstuffs and water samples. Food Chem.
100: 1698-1703.
Wauer,
G., Heckemann, H.J. & Koschel, R. 2004. Analysis of toxic
aluminium species in natural waters. Microchim. Acta 146:
149-154.
Wolfbeis,
O.S. 2005. Materials for fluorescence-based optical chemical sensors.
J. Mater. Chem. 15: 2657-2669.
Wolfbeis,
O.S. 1991. Fiber Optic Chemical Sensor and Biosensor. Jil.
1 & 2. Boca Raton: CRC Press.
*Corresponding author; email: fsuah@usm.my