Sains Malaysiana 45(12)(2016):
1807–1814
http://dx.doi.org/10.17576/jsm-2016-4512-04
Kesan Penambahan
Surfaktan Tak-Ionik kepada Kompleks Al(III)-Morin dalam Penentuan
Aluminium (III) Akues secara Spektrofotometri
(Effect of Addition
of Non-Ionic Surfactant to the A2l(III)-Morin Complex in Spectrophotometry
Determination of Aqueous Aluminum(III))
FAIZ BUKHARI
MOHD
SUAH1*,
MUSA
AHMAD2,3
& LEE YOOK HENG2
1Pusat Pengajian
Sains Kimia, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang,
Malaysia
2Pusat Pengajian
Sains Kimia dan Teknologi Makanan, Fakulti Sains dan Teknologi,
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan,
Malaysia
3Fakulti Sains dan
Teknologi, Universiti Sains Islam Malaysia, Bandar Baru Nilai,
71800 Nilai
Negeri Sembilan
Darul Khusus, Malaysia
Received: 1 February
2014/Accepted: 8 April 2016
ABSTRAK
Dalam kajian ini, kesan surfaktan
tak-ionik terhadap kompleks Al(III)-morin telah dijalankan. Surfaktan
tak-ionik didapati telah meningkatkan bacaan serapan kompleks
Al(III)-morin. Penambahan triton X-100 kepada kompleks Al(III)-morin
telah membolehkan penentuan ion Al(III) dalam kuantiti submikrogram
pada pH4.00 dijalankan. Bacaan serapan maksimum adalah pada 425
nm dengan serapan molar, ε, 9.31 × 103 l.mol-1cm-1.
Graf kalibrasi bagi penentuan ion Al(III) adalah linear daripada
0.03 hingga 2.0 μg mL-1 dengan had pengesanan 0.015 μg
mL-1 telah
diperoleh dalam kajian ini. Sisihan ralat relatif (r.s.d) ialah
2.2% bagi kepekatan Al(III) 1.0 μg mL-1. Kesan penambahan
ion lain terhadap kompleks Al(III)-morin turut dijalankan dan
didapati ion Cu(II), Zn(II) dan Pb(II) memberi gangguan yang lebih
berbanding ion-ion lain.
Kata kunci: Interaksi kompleks
logam-surfaktan; morin; penentuan aluminium; surfaktan tak-ionik;
Triton X-100
ABSTRACT
The effect of surfactants on
the Al(III)-morin complex have been studied. It was found that
non-ionic surfactant noticeably enhances the absorbance of the
Al(III)-morin complex. Determination of submicrogram quantities
of Al(III) ion at pH4.00 was made possible by the addition of
triton X-100. Maximum absorption was obtained at wavelength of
425 nm, with the calculated molar absorptivity, ε, of 9.31
× 103 l.mol-1.cm-1.
A linear calibration curve of 0.03 to 2.0 μg mL-1 with
the detection limit of 0.015 μg mL-1 was attained for determination
of Al(III) ion. The calculated relative standard deviation (r.s.d)
was 2.2% for Al(III) ion quantified at 1.0 μg mL-1.
The influence of foreign ions towards the Al(III)-morin complex
responses have been carried out too, with Cu(II), Zn(II) and Pb(III)
were found to be the main interferences.
Keywords: Determination of aluminium; metal complex-surfactant interaction;
morin; non-ionic surfactant; Triton X-100
REFERENCES
Ahmed,
M.J. & Hossan, J. 1995. Spectrophotometric determination of
aluminium by morin. Talanta 42: 1135-1142.
Alarfaj,
N.A. & El-Tohamy, F. 2015. Applications of micelle enhancement
in luminescent-based analysis. Luminescence 30: 3-11.
Alonso,
A., Almendral, M.J., Porras, M.J., Curto, Y. & De Maria, G.C.
2001. Flow-injection solvent extraction with and without phase
separation: Fluorimetric determination of aluminium in water.
Anal. Chim. Acta 447: 211-217.
Azimi,
M., Nafissi-Varcheh, N., Mogharabi, M., Faramarzi, M.A. &
Aboofazeli, R. 2016. Study of laccase activity and stability in
the presence of ionic andnon-ionic surfactants and the bioconversion
of indole in laccase-Tx-100 system. J. Mol. Catal. B: Enzym.
126: 69-75.
Carillo,
F., Perez, C. & Camara, C. 1991. Sensitive spectrofluorimetric
determination of aluminium(III) with Eriochrome Red B. Anal.
Chim. Acta 243: 121-125.
Carrion
Dominguez, J.L. & Cirugeda, M.D.L.G. 1987. Spectroscopic study
of the aluminium/lumogallion system in the presence of non-ionic
surfactants. Anal. Chim. Acta 198: 53-61.
Dean,
J.A. 1989. Chemist Ready Reference Handbook. New York:
McGraw-Hill.
Diaz
Garcia, M.E. & Sanz-Medel, A. 1986. Dye-surfactant interactions:
A review. Talanta 33: 255-264.
Ershova,
N.I. & Ivanov, V.M. 2000. Application of chromaticity characteristics
for direct determination of trace aluminum with Eriochrome cyanine
R by diffuse reflection spectroscopy. Anal. Chim. Acta 408:
145-151.
Fletcher,
P.D.I. & Robinson, B.H. 1984. The effect of organised surfactant
systems on the kinetics of metal-ligand complex formation and
dissociation. J. Chem. Soc. Faraday Trans. I 80: 2417-2437.
Fu-Sheng,
W. & Fang, Y. 1983. Spectrophotometric determination of silver
with cadion 2B and triton X-100. Talanta 30: 190-192.
Ghaedi,
M. 2007. Elective and sensitized spectrophotometric determination
of trace amounts of Ni(II) ion using α-benzyl dioxime in
surfactant media. Spectrochim. Acta A 66: 295- 301.
Goto,
K., Tamura, H., Onodera, M. & Nagayama, M. 1974. Spectrophotometric
determination of aluminium with ferron and a quaternary ammonium
salt. Talanta 21: 183-190.
Jarosz,
M. & Malat, M. 1988. Spectrophotometric study of the formation
of ternary complexes of iron(III) with some triphenylmethane dyes
and cationic surfactants. Microchem. J. 37: 268-274.
Lobinski,
R. & Marczenko, Z. 1992. Recent advances in ultraviolet-visible
spectrophotometry. Crit. Rev. Anal. Chem. 23: 55-111.
Marczenko,
Z. 1986. Separation and Spectrophotometric Determination of
Elements. Chichester: Ellis Horwood Limited.
Miura,
J. 1989. Masking agents in the spectrophotometric determination
of metal ions with 2-(5-bromo-2-pyridylazo)- 5-diethylaminophenol
and non-ionic surfactant. Analyst 114: 1323-1329.
Miyawaki,
M. & Uesugi, K. 1985. Highly sensitive spectrophotometric
determination of micro amounts of iron with chromai blue G and
cetyltrimethylammonium chloride. Microchim. Acta I: 135-141.
Narin,
I., Tuzen, M. & Soylak, M. 2004. Aluminium determination in
environmental samples by graphite furnace atomic absorption spectrometry
after solid phase extraction on Amberlite XAD-1180/pyrocatechol
violet chelating resin. Talanta 63: 411-418.
Oter,
O. & Aydogdu, S. 2011. Determination of aluminum ion with
morin in a medium comprised by ionic liquid-water mixtures. J.
Fluoresc. 21: 43-50.
Panhwar,
Q.K., Memon, S. & Bhanger, M.I. 2010. Synthesis, characterization,
spectroscopic and antioxidation studies of Cu(II)–morin complex.
J. Mol. Struct. 967: 47-53.
Pereiro,
M.R., Lopez, Diaz Garcia, M.E. & Sanz Medel, A. 1990. On-line
aluminium pre-concentration and its application to the determination
of the metal in dialysis concentrates by atomic spectrometric
methods. J. Anal. At. Spectrom. 5: 15-19.
Petcu,
A.R., Rogozea, E.A., Lazar, C.A., Olteanu, N.L., Meghea, A. &
Mihaly, M. 2016. Specific interactions within micelle microenvironment
in different charged dye/surfactant systems. Arab J. Chem.
9: 9-17.
Piñeiro,
L., Mercedes, N. & Al-Soufi, W. 2015. Fluorescence emission
of pyrene in surfactant solutions. Adv. Colloid Interface Sci.
215: 1-12.
Pramauro,
E. & Pelizzetti, E. 1996. Surfactants in Analytical Chemistry:
Applications of Organized Amphiphilic Media. New York: Elsevier.
Rao,
T.P., Reddy, M.L.P. & Pillai, A.R. 1998. Application of ternary
and multicomponent complexes to spectrophotometric and spectrofluorimetric
analysis of inorganics. Talanta 46: 765-813.
Safavi,
A., Mirzaee, M. & Abdollahi, H. 2003. Simultaneous spectrophotometric
determination of iron, titanium, and aluminum by partial least-squares
calibration method in micellar medium. Anal. Lett. 36:
699-712.
Sarzani,
C., Mentarti, E., Porta, V. & Gennro, M.C. 1987. Comparison
of anion-exchange methods for preconcentration of trace aluminum.
Anal. Chem. 59: 484-486.
Shokrollahi,
A., Ghaedi, M., Niband, M.S. & Rajabi, H.R. 2008. Selective
and sensitive spectrophotometric method for determination of sub-micro-molar
amounts of aluminium ion. J. Hazard. Mater. 151: 642-648.
Simoncic, B. & Kert, M. 2008. Influence of the chemical structure
of dyes and surfactants on their interactions in binary and ternary
mixture. Dyes & Pigments 76: 104-112.
Tan Ling Ling & Musa Ahmad. 2008. Penggunaan jaringan neural
tiruan untuk analisis kuantitatif ion Al(III) berasaskan pengecaman
corak spektrum serapan. Sains Malaysiana 37(1): 51-57.
Warner, I.M. &
McGown, L.B. 1992. Molecular fluorescence, phosphorescence and
chemiluminescence spectrometry. Anal. Chem. 64: 343R-352R.
Wolfson, A.D. &
Gracey, G.M. 1987. Matrix effects in the determination of aluminium
in dialysis fluids by graphite furnace atomic absorption spectrometry.
Analyst 112: 1387- 1389.
*Corresponding author; email: fsuah@usm.my