Sains Malaysiana 46(10)(2017): 1951–1958

http://dx.doi.org/10.17576/jsm-2017-4610-34

 

Kesan Kuasa Frekuensi Radio terhadap Komposisi Ikatan Kimia Filem Nipis a-CNx sebagai Pengesan Kelembapan

(Influence of RF Power on Chemical Bonding Composition on a-CNx Thin Films as Humidity Sensor)

 

SITI AISYAH ABD AZIZ & ROZIDAWATI AWANG*

 

Pusat Pengajian Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 30 June 2017/Accepted: 7 September 2017

 

ABSTRAK

Filem nipis a-CNx mempunyai ikatan kimia C-N (sp3), C=N (sp2) dan C≡N (sp1). Ikatan C=N dan C≡N mudah diputuskan oleh serangan hidrogen semasa proses pemendapan filem untuk membentuk ikatan C-H dan N-H. Pembentukan komponen sp2 grafit dalam filem nipis a-CNx yang disebabkan oleh kewujudan atom nitrogen menyumbang kepada penurunan rintangan elektrik dan peningkatan kekonduksian elektrik. Ciri ini adalah penting untuk aplikasi filem nipis a-CNx sebagai pengesan kelembapan. Dalam kajian ini, filem nipis karbon nitrida amorfus (a-CNx) disediakan di atas substrat kuartza dan silikon (111) menggunakan teknik PECVD. Sampel disediakan pada kuasa frekuensi radio (RF) yang berbeza iaitu pada 40, 50, 60, 70 dan 80 W dan dikaji kesannya ke atas komposisi ikatan kimia dan morfologi filem serta keupayaannya sebagai pengesan kelembapan. Puncak D (sp2C) dan G (sp3C) yang jelas dicerap menggunakan spektroskopi Raman dalam semua filem nipis a-CNx yang disediakan dengan keamatan tertinggi didapati pada kuasa RF 70 W. Mikrokgraf daripada mikroskop elektron imbasan pancaran medan (FESEM) menunjukkan morfologi permukaan semua sampel mempunyai struktur butiran berbentuk seperti kobis bunga yang seragam. Spektroskopi fotoelektron sinar X (XPS) mengesahkan kehadiran ikatan C-C/C=C, C=N dan C≡N dalam filem nipis a-CNx. Kesemua filem nipis a-CNx yang dihasilkan menunjukkan tindak balas terhadap kelembapan berbeza dengan kepekaan antara 60-70%. Filem nipis a-CNx yang disediakan pada kuasa RF 70 W menunjukkan kepekaan tertinggi kesan daripada ketakteraturan karbon dan kandungan sp3C yang lebih tinggi.

 

Kata kunci: Karbon nitrida; PECVD; saiz kelompok

 

ABSTRACK

The a-CNx thin film has chemical bonding of C-N (sp3), C=N (sp2) and C≡N (sp1). C=N and C≡N bonds are easily resolved by hydrogen attack during the film deposition process to form C-H and N-H bonds. The formation of graphite sp2 components in the a-CNx thin film caused by the presence of nitrogen atom contributes to the reduction of the electrical resistance and enhances the electrical conductivity. These features are essential for a-CNx thin film application as a humidity sensor. In this study, amorphous carbon nitride films (a-CNx) are deposited on the quartz and silicon (111) substrate using PECVD techniques. The samples were deposited at different RF power at 40, 50, 60, 70 and 80 W and analyzed their effects on film chemical composition and films morphology as well as their ability as humidity sensor. D (sp2C) peak and G (sp3C) peak are clearly observed using Raman spectroscopy in all a-CNx thin films with the highest intensity obtained at RF 70 W. Films micrograph observed by field emission scanning electron microscopy (FESEM) show that surface morphology of all samples have a uniform structural shape of cauliflower. X-ray photoelectron spectroscopy (XPS) confirmed the presence of C-C/C=C, C=N and C≡N bonds in the a-CNx thin film. All the a-CNx thin films showed a response to different humidity with sensitivity between 60-70%. The a-CNx thin film deposited at RF 70 W power indicates the highest sensitivity due to carbon disorder and higher sp3C content.

Keywords: Carbon nitride; cluster size; PECVD

REFERENCES

 

Awang, R., Aziz, N.F.H., Purhanudin, N. & Zalita, Z. 2017. Characterization of a-CNx thin films prepared by RF-PECVD technique for humidity sensor. Sains Malaysiana 46(3): 509-514.

Aziz, S.A.A., Purhanudin, N. & Awang, R. 2017. Chemical bonding and humidity sensing properties of amorphous carbon nitride (a-CNx) by acetylene gas. AIP Conference Proceedings (Vol. 1838, No. 1, p. 020010).

Chandrashekaraiah, T.H., Bogdanowicz, R., Rühl, E., Danilov, V., Meichsner, J., Thierbach, S., & Hippler, R. 2016. Spectroscopic study of plasma polymerized aC:H films deposited by a dielectric barrier discharge. Materials 9(7): 594.

Ech-Chamikh, E., Essafti, A., Ijdiyaou, Y. & Azizan, M. 2006. XPS study of amorphous carbon nitride (aC:N) thin films deposited by reactive RF sputtering. Solar Energy Materials and Solar Cells 90(10): 1420-1423.

Ferrari, A.C. & Robertson, J. 2000. Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B 61(20): 14095.

Ferrari, A.C., Rodil, S.E. & Robertson, J. 2003. Interpretation of infrared and Raman spectra of amorphous carbon nitrides. Physical Review B 67(15): 155306.

Ganesh, V., Alizadeh, M., Shuhaimi, A., Pandikumar, A., Goh, B.T., Huang, N.M. & Rahman, S.A. 2015. Investigation of the electrochemical behavior of indium nitride thin films by plasma-assisted reactive evaporation. RSC Advances 5(22): 17325-17335.

Hammer, P., Baker, M.A., Lenardi, C. & Gissler, W. 1996. Ion beam deposited carbon nitride films: Characterization and identification of chemical sputtering. Thin Solid Films 290: 107-111.

Hao, J., Xu, T. & Liu, W. 2005. Effect of deposition pressure on microstructure and properties of hydrogenated carbon nitride films prepared by DC-RF-PECVD. Journal of Non- Crystalline Solids 351(49): 3671-3676.

Horváth, Z.E., Koós, A.A., Kertész, K., Molnár, G., Vértesy, G., Bein, M.C. & Biró, L.P. 2008. The role of defects in chemical sensing properties of carbon nanotube films. Applied Physics A: Materials Science & Processing 93(2): 495-504.

Ilie, A., Ferrari, A.C., Yagi, T. & Robertson, J. 2000. Effect of sp 2-phase nanostructure on field emission from amorphous carbons. Applied Physics Letters 76(18): 2627-2629.

Khanis, N.H., Ritikos, R., Othman, M., Rashid, N.M.A., Gani, S.M.A. & Rahman, S.A. 2013. Catalyst free carbon nitride nanostructures prepared by rf-PECVD technique on hydrogenated amorphous carbon template. Materials Chemistry and Physics 138(2): 514-518.

Kundoo, S., Chattopadhyay, K.K., Banerjee, A.N. & Nandy, S.K. 2003. Synthesis and optical characterization of amorphous carbon nitride thin films by hot filament assisted RF plasma CVD. Vacuum 69(4): 495-500.

Lee, J.G. & Lee, S.P. 2006. Impedance characteristics of carbon nitride films for humidity sensors. Sensors and Actuators B: Chemical 117(2): 437-441.

Lee, J.G. & Lee, S.P. 2005. Humidity sensing properties of CN x film by RF magnetron sputtering system. Sensors and Actuators B: Chemical 108(1): 450-454.

Lee, J.S., Liu, K.S. & Lin, I.N. 1997. Electron field emission characteristics of planar diamond film array synthesized by chemical vapor deposition process. Applied Physics Letters 71(4): 554-556.

Liu, A.Y. & Cohen, M.L. 1989. Prediction of new low compressibility solids. Science 245: 841-842.

Marton, D., Boyd, K.J., Al-Bayati, A.H., Todorov, S.S. & Rabalais, J.W. 1994. Carbon nitride deposited using energetic species: A two-phase system. Physical Review Letters 73(1): 118.

Motta, E.F. & Pereyra, I. 2004. Amorphous hydrogenated carbon-nitride films prepared by RF-PECVD in methane-nitrogen atmospheres. Journal of Non-Crystalline Solids 338: 525-529.

Nakayama, N., Tsuchiya, Y., Tamada, S., Kosuge, K., Nagata, S., Takahiro, K. & Yamaguchi, S. 1993. Structural properties of amorphous carbon nitride films prepared by reactive RF-magnetron sputtering. Japanese Journal of Applied Physics 32(10A): L1465.

Othman, M., Ritikos, R., Khanis, N.H., Rashid, N.M.A., Rahman, S.A., Ab Gani, S.M. & Muhamad, M.R. 2011. Effects of rf power on the structural properties of carbon nitride thin films prepared by plasma enhanced chemical vapour deposition. Thin Solid Films 519(15): 4981-4986.

Robertson, J. 1997. Gap states in diamond-like amorphous carbon. Philosophical Magazine B 76(3): 335-350.

Shahidan, M.F.S. & Awang, R. 2016. Effect of argon-oxygen flow rate ratio in magnetron sputtering on morphology and hygroscopic property of SnO2 thin film. Int. J. Electrochem. Sci. 11: 6886-6901.

Umar, Z.A., Rawat, R.S., Ahmad, R., Chen, Z., Zhang, Z., Siddiqui, J. & Baig, M.A. 2017. Structural, compositional and hardness properties of hydrogenated amorphous carbon nitride thin films synthesized by dense plasma focus device. Surface and Interface Analysis 49(6): 548-553.

Yap, Y.K., Kida, S., Aoyama, T., Mori, Y. & Sasaki, T. 1998. Influence of negative dc bias voltage on structural transformation of carbon nitride at 600 C. Applied Physics Letters 73(7): 915-917.

Zhang, Y., Zhou, Z. & Li, H. 1996. Crystalline carbon nitride films formation by chemical vapor deposition. Applied Physics Letters 68(5): 634-636.

Zhao, Z.G., Liu, X.W., Chen, W.P. & Li, T. 2011. Carbon nanotubes humidity sensor based on high testing frequencies. Sensors and Actuators A: Physical 168(1): 10-13.

 

*Corresponding author; email: rozida@ukm.edu.my

 

 

 

 

 

 

previous