Sains Malaysiana 46(10)(2017):
19591969
http://dx.doi.org/10.17576/jsm-2017-4610-35
The Influences of Basic Physical Properties of Clayey Silt and Silty
Sand on Its Laboratory Electrical Resistivity Value in Loose
and Dense Conditions
(Pengaruh Sifat
Fizikal Asas
Kelodak Lempung dan Pasir Berkelodak
pada Nilai
Kerintangan Elektrik Makmal dalam Keadaan
Longgar dan
Padat)
MOHD
HAZREEK
ZAINAL
ABIDIN1*,
ROSLI
SAAD2,
DEVAPRIYA
CHITRAL
WIJEYESEKERA1,
FAUZIAH
AHMAD3,
MOHAMAD
FAIZAL
TAJUL
BAHARUDDIN1,
SAIFUL
AZHAR
AHMAD
TAJUDIN1
& AZIMAN MADUN1
1Faculty of Civil and
Environmental Engineering, Universiti
Tun Hussein Onn Malaysia, 86400 Batu
Pahat, Johor Darul
Takzim, Malaysia
2School of Physics, Universiti Sains Malaysia, 11800
USM Penang, Pulau Pinang, Malaysia
3School of Civil Engineering,
Universiti Sains
Malaysia, 14300 Nibong Tebal,
Pulau Pinang, Malaysia
Received: 12 March 2016/Accepted:
28 March 2017
ABSTRACT
Non-destructive test
which refers to electrical resistivity method is recently popular
in engineering, environmental, archaeological and mining studies.
Based on the previous studies, the results on electrical resistivity
interpretation were often debated due to lack of clarification
and evidences in quantitative perspective. Traditionally, most
of the previous result interpretations were depending on qualitative
point of view which is risky to produce unreliable outcomes.
In order to minimise those problems,
this study has performed a laboratory experiment on soil box
electrical resistivity test which was supported by an additional
basic physical properties of soil test like particle size distribution
test (d), moisture content test (w), density test (ρbulk) and Atterberg limit test (LL,
PL
and PI). The test was performed to establish
a series of electrical resistivity value (ERV)
with different quantity of water content for clayey silt and
silty sand in loose and dense condition. Apparently, the soil
resistivity value was different under loose (L) and dense (C)
conditions with moisture content and density variations (silty
SAND = ERVLoose:
600 - 7300 Ωm & ERVDense:
490 - 7900 Ωm while Clayey SILT =
ERVLoose: 13 - 7700 Ωm & ERVDense:
14 - 8400 Ωm) due to several
factors. Moreover, correlation of moisture content (w) and density
(ρbulk) due
to the ERV was established as follows; Silty SAND:
w(L)
= 638.8ρ-0.418,
w(D)
= 1397.1ρ-0.574, ρBulk(L) =
2.6188e-6E-05ρ, ρBulk(D) =
4.099ρ-0.07 while Clayey SILT:
w(L)
= 109.98ρ-0.268, w(D) =
121.88ρ-0.363, ρBulk(L) =
-0.111ln(ρ) + 1.7605, ρBulk(D)
= 2.5991ρ-0.037 with determination coefficients,
R2 that varied from 0.5643 0.8927. This
study was successfully demonstrated that the consistency of
ERV
was greatly influenced by the variation of soil
basic physical properties (d, w, ρBulk, LL,
PL
and PI). Finally, the reliability of the
ERV
result interpretation can be enhanced due to its
ability to produce a meaningful outcome based on supported data
from basic geotechnical properties.
Keywords; Basic geotechnical
properties; basic physical properties of soil; correlation of
moisture content and density; laboratory electrical resistivity
ABSTRAK
Ujian tak musnah yang
merujuk kepada
kaedah kerintangan elektrik semakin banyak digunakan dalam kajian kejuruteraan,
alam sekitar,
arkeologi dan perlombongan. Berdasarkan kajian terdahulu,
interpretasi keputusan
kerintangan elektrik sering diperdebatkan disebabkan kekurangan bukti kajian dalam
perspektif kuantitatif.
Kebiasaannya interpretasi keputusan
kerintangan elektrik
banyak bergantung kepada perspektif kualitatif justeru berkemungkinan besar berisiko tinggi untuk menghasilkan keputusan yang salah. Maka, kajian ini
telah menjalankan
uji kaji makmal
kerintangan elektrik
tanah disokong oleh uji kaji
sifat asas
fizikal tanah seperti
uji kaji
taburan saiz zarah
(d), kandungan lembapan
(w), ketumpatan (ρbulk) dan had Atterberg (LL,
PL
dan PI).
Uji kaji dijalankan untuk menghasilkan satu siri nilai
kerintangan elektrik
(ERV)
berdasarkan kuantiti
air yang berbeza terhadap
lempung berkelodak dan kelodak berpasir
dalam keadaan
longgar dan juga mampat. Hasil keputusan menunjukkan nilai kerintangan tanah adalah berbeza
dalam keadaan
longgar (L) dan mampat (C) serta variasi kandungan air dan juga ketumpatan (pasir berkelodak = ERVLonggar: 600 - 7300 Ωm & ERVMampat:
490 - 7900 Ωm sementara
lempung berkelodak
= ERVLonggar: 13 - 7700 Ωm & ERVMampat:
14 - 8400 Ωm) disebabkan
beberapa faktor.
Selain daripada itu, korelasi kandungan
lembapan (w) dan
ketumpatan (ρbulk) terhadap ERV telah diterbitkan seperti berikut; pasir berkelodak: w(L)
= 638.8ρ-0.418, w(D) =
1397.1ρ-0.574, ρBulk(L)
= 2.6188e-6E-05ρ, ρBulk(D) =
4.099ρ-0.07 sementara
pasir berkelodak:
w(L)
= 109.98ρ-0.268, w(D) =
121.88ρ-0.363, ρBulk(L)
= -0.111ln(ρ) + 1.7605, ρBulk(D)
= 2.5991ρ-0.037 dengan
pekali dapatan,
R2 bervariasi lingkungan 0.5643 - 0.8927.
Kajian ini telah berjaya menunjukkan bahawa tahap kekonsistenan
nilai ERV boleh
dipengaruhi oleh
variasi nilai sifat
asas fizikal
tanah (d, w, ρBulk, LL,
PL
dan PI). Maka, kebolehpercayaan
terhadap interpretasi
nilai ERV boleh dipertingkatkan kerana kemampuannya untuk menghasilkan keputusan bermakna berdasarkan sokongan data daripada sifat asas geoteknik.
Kata kunci: Kaedah kerintangan
elektrik; kolerasi
terhadap kandungan lembapan dan ketumpatan;
sifat asas
fizikal tanah; sifat asas geoteknik
REFERENCES
Abdallatif, T., Khafagy, A.A.B. & Khozym, A. 2015. Geophysical investigation to delineate hazardous cavities in Al-Hassa karstic region, Kingdom of Saudi Arabia. Engineering
Geology for Society and Territory 5: 507-514.
Abidin, M.H.Z., Baharuddin, M.F.T., Zawawi, M.H.,
Ali, N.A.M., Madun, M. & Tajudin,
S.A.A. 2015. Groundwater seepage mapping using
electrical resistivity imaging. Applied Mechanics
and Materials 773-774: 1524-1534.
Abidin, M.H.Z., Saad, R., Wijeyesekera, D.C. &
Ahmad, F. 2014a. Soil resistivity influence
due to the different utilization of electrical resistivity array.
Electronic Journal of Geotechnical Engineering 18: 5643-5654.
Abidin, M.H.Z., Saad, R., Wijeyesekera, D.C., Ahmad,
F. & Ismail, N.A. 2014b. The influence
of electrical resistivity array on its soil electrical resistivity
value. Applied Mechanics and Materials 510: 185-192.
Abidin, M.H.Z., Saad, R., Ahmad, F., Wijeyesekera,
D.C. & Baharuddin, M.F.T. 2014c.
Correlation analysis between field electrical resistivity value (ERV)
and basic geotechnical properties (BGP). Soil Mechanics
and Foundation Engineering 51: 117-125.
Abidin, M.H.Z., Wijeyesekera, D.C., Saad, R. &
Ahmad, F. 2013. The influence of soil moisture
content and grain size characteristics on its field electrical
resistivity. Electronic Journal of Geotechnical Engineering
18: 699-705.
Abidin, M.H.Z., Saad, R., Ahmad, F., Wijeyesekera,
D.C. & Baharuddin, M.F.T. 2012.
Integral analysis of geoelectrical (resistivity)
and geotechnical (spt) data in slope
stability assessment. Academic Journal of Science
1: 305-316.
Abu-Shariah, M.I.I. 2009. Determination of cave geometry by using a geoelectrical resistivity inverse model. Engineering Geology 105: 239-244.
Afshar, A., Abedia, M., Norouzia,
G. & Riahib, M. 2015. Geophysical investigation of underground water
content zones using electrical resistivity tomography and ground
penetrating radar. A case study in Hesarak-Karaj,
Iran: Engineering Geology 196: 183-193.
Aktürk, O. & Doyuran, V. 2015. Integration of electrical resistivity imaging
(ERI) and ground-penetrating radar (GPR) methods to identify
soil profile around Necatibey Subway
Station, Ankara, Turkey. Environmental Earth Sciences
74(3): 2197-2208.
Al-Sabahi, E., Samsuddin,
A.R., Yaacob, W.Z.W. & Hamzah,
U. 2008. 2D electrical resistivity investigation
at Ampar Tenang
Landfill Site, Selangor D.E. Sains
Malaysiana 37(1): 33-37.
Anita, T. 2005. Water content and porosity estimated from ground-penetrating
radar and resistivity. Journal of Applied Geophysics 58:
99-111.
Baharuddin, M.F.T., Othman, A.R., Taib, S., Hashim, R., Abidin, M.H.Z. &
Radzuan, M.A. 2013. Evaluating
freshwater lens morphology affected by seawater intrusion usingnchemistry-resistivity integrated technique: A case study
of two different land covers in Carey Island, Malaysia. Environmental
Earth Sciences 69: 2779-2797.
Benson, R.C., Yuhr, L. & Kaufmann,
R.D. 2003. Some considerations
for selection and successful application of surface geophysical
methods. Proceedings of the 3rd
Int. Conference on Applied Geophysics.
Billi, A., Filippis, L.D., Poncia, P.P., Sellad, P. & Faccenna, C. 2016. Hidden
sinkholes and karst cavities in the travertine plateau of a
highly-populated geothermal seismic territory (Tivoli, central
Italy): Geomorphology 255: 63-80.
British Standard 1377. 1990.
Methods of test for Soils for Civil Engineering Purposes.
Burger, H.R., Sheehan, A.F. & Jones, C.H. 2006. Introduction to Applied Geophysics.
New York: W.W. Norton & Company.
Clayton, C.R.I., Matthews, M.C. & Simons, N.E. 1995. Site Investigation. London: Blackwell Science Ltd.
Cosenza,
P., Marmet, E., Rejiba,
F., Jun Cui, Y., Tabbagh, A. &
Charlery, Y. 2006. Correlations between geotechnical
and electrical data: A case study at Garchy
in France. Journal of Applied Geophysics 60: 165-178.
Cuong,
L.P., Tho, L.V., Juzsakova,
T., Rédey, A. & Hai, H. 2016. Imaging the movement of toxic pollutants with 2D electrical resistivity
tomography (ERT) in the geological environment of the Hoa Khanh Industrial Park, Da Nang,
Vietnam. Environmental Earth Sciences 75: 286.
Ebraheem,
A.M., Mulla, M.M.A., Sherif,
M.M., Awad, O., Akram,
S.F., Suweidi, N.B.A. & Shetty,
A. 2014. Mapping groundwater conditions in different geological environments
in the northern area of UAE using 2D earth resistivity imaging
survey. Environmental Earth Sciences 72(5): 1599-1614.
Fragaszy, R.,
Santamarina, J., Amekudzi,
A., Assimaki, D., Bachus,
R., Burns, S., Cha, M., Cho, G., Cortes, D., Dai, S., Espinoza,
D., Garrow, L., Huang, H., Jang, J., Jung, J., Kim, S., Kurtis,
K., Lee, C., Pasten, C., Phadnis,
H., Rix, G., Shin, H., Torres, M. & Tsouris,
C. 2011. Sustainable development and energy
geotechnology - Potential roles for
geotechnical engineering. KSCE Journal of Civil Engineering
15: 611-621.
Fraiha,
S.G.C. & Silva, J.B.C. 1994. Factor analysis of ambiguity in geophysics. Geophysics 59:
1083-1091.
Friedel,
S., Thielen, A. & Springman,
S.M. 2006. Investigation of a slope endangered
by rainfall-induced landslides using 3D resistivity tomography
and geotechnical testing. Journal of Applied Geophysics
60: 100-114.
Godio, A.,
Strobbia, C. & de Bacco,
G. 2006. Geophysical characterisation
of a rockslide in an Alpine region. Engineering
Geology 83: 273-286.
Griffiths,
D.H. & King, R.F. 1981. Applied Geophysics
for Geologist and Engineers- The Element of Geophysical Prospecting.
Oxford: Pergamon Press.
Hafez,
M.A., Atya, M.A., Hassan, A.M., Sato,
M., Wonik, T. & El-Kenawy, A.A.
2008.
Shallow geophysical investigations at the
Akhmim archaeological site, Suhag,
Egypt. Applied Geophysics 5(2):
136-143.
Hajizadeh,
F. & Akhondi, S.R. 2016. Determining aquifers and bedrock of Qaen
plain by the resistance measurement method. Modern
Applied Science 10(1): 200-206.
Hamzah,
U., Bahrudin, N.F.D.B., Ismail, M.A.
& Abbas, B.I.N.A.A. 2009b. Survei pengimejan elektrik
dan georadar
dalam kajian tanah
runtuh Taman Hill View, Ampang,
Selangor. Sains Malaysiana
38(3): 305-311.
Hamzah,
U., Ismail, M.A. & Samsudin, A.R.
2009c. Geoelectrical resistivity
and ground penetrating radar techniques in the study of hydrocarbon-contaminated
soil. Sains Malaysiana
38(3): 305-311.
Hamzah,
U., Samsudin, A.R., Rafek,
A.G. & Razak, K.A. 2009a. Kemasinan air perigi dan subpermukaan
lembangan tuba Langkawi dengan
analisis hidrokimia
dan survei keberintangan
elektrik menegak.
Sains Malaysiana 38(6):
851-856.
Hamzah,
U. & Chieh, C.S. 2008. Penyiasatan infiltrasi bahan larut resap
di sekitar tapak
pelupusan sampah ampar tenang, dengkil.
Sains Malaysiana
37(2): 161-168.
Hamzah,
U., Samsudin, A.R. & Malim,
E.P. 2006b. Soil and groundwater investigation
in Kuala Selangor coastal plain using geoelectrical
and geochemical surveys. Sains
Malaysiana 35(1): 11-18.
Hamzah,
U., Sirat, D.S. & Muzafar,
N. 2006a. Pemetaan akuifer dengan
teknik geoelektrik
di Sungai Kelambu, Banting, Selangor.
Sains Malaysiana 35(2):
35-40.
Hawamdeh,
A., Jaradat, R. & Alsaad,
Z. 2015. Integrated application of geophysical
methods for investigation of the Al-Berktain
archaeological site in the city of Jerash,
Jordan. Environmental Earth Sciences 73(7): 3665-3674.
Hazreek, Z.A.M.,
Rosli, S., Chitral,
W.D., Fauziah, A., Azhar,
A.T.S., Aziman, M. & Bakar, I.
2015. Soil identification using field electrical resistivity method.
Journal of Physics: Conference Series 622: 012030.
Hsua,
H., Yanitesb, B.J., Chena, C. &
Chenc, Y. 2009. Bedrock detection using 2D electrical resistivity imaging along the
Peikang River, central Taiwan.
Geomorphology 114: 406-414.
Jeeva,
M. & Hamzah, U. 2012. Kajian migrasi bahan larut resap
di tapak pelupusan
sampah Sungai Dedu, Telok Datuk dengan kaedah geofizik dan geokimia. Sains
Malaysiana 41(7): 829-840.
Jung,
Y., Lee, Y. & Ha, H. 2000. Application of
electrical resistivity imaging techniques to civil and environmental
problems. Use of Geophysical Methods in Construction
2000: 52-64.
Jusoh, Z.
2010. Application of 2-D resistivity imaging
and seismic refraction technique in subsurface investigation
for civil engineering. MSc. Thesis, Sch. Science Universiti
of Malaysia (Unpublished).
Khatri,
R., Shrivastava, V.K. & Chandak,
R. 2011. Correlation between vertical electric
sounding and conventional methods of geotechnical site investigation.
International Journal of Advanced Engineering Sciences and
Technologies 4: 042- 053.
Liu,
C. & Evett, J.B. 2008. Soils and Foundation. New Jersey: Pearson International.
Liu,
Z., Liu, S., Cai,
Y. & Fang, W. 2015. Electrical resistivity
characteristics of diesel oil-contaminated kaolin clay and a
resistivity-based detection method. Environmental
Science and Pollution Research 22(11): 8216-8223.
Margiotta, S.,
Negri, S., Parise, M. & Quarta,
T.A. M. 2015. Evaluating the potentialities
of hydro-stratigraphic, geomorphological and geophysical analyses
to detect underground cavities. Engineering Geology
for Society and Territory 5: 559-562.
Martínez-Pagán,
P., Gómez-Ortiz, D., Martín-Crespo, T. & Manteca, J.I. 2010. Detecting the occurrence of shallow mining cavities by electrical
resistivity imaging method. A study
case on the Victoria Cave, Cartagena (SE Spain). Proceedings
of SEG Annual Meeting.
Masrom,
S.N., Arifin, M.H., Harun, A.R. &
Samsudin, A.R. 2011. Survei keberintangan geoelektrik untuk mengesan terowong di Bukit Tenggek, Setiu, Terengganu. Sains
Malaysiana 40(11): 1223-1229.
Mauritsch, H.J.,
Seiberl, W., Arndt, R., Römer,
A., Schneiderbauer, K. & Sendlhofer,
G.P. 2000. Geophysical investigations of large
landslides in the carnic region of Southern Austria.
Engineering Geology 56: 373-388.
Moghaddam, S.,
Dejpasand, S., Rohani,
A.K., Parnow, S. & Ebrahimi,
M. 2015. Detection and determination of groundwater contamination
plume using time-lapse electrical resistivity tomography (ERT)
method. Journal of Mining and Environment 8(1): 103-110.
Mohamed,
N., Hamzah, U. & Sahibin,
A.R. 2009. Kepekatan kandungan logam
berat dalam
tanih di tapak pelupusan sampah Sg. Kembong, Bangi, Selangor.
Sains Malaysiana 38(6):
841-850.
Nouioua,
I., Fehdi, C., Boubaya,
D., Serhane, B. & Djellali,
A. 2015. Mapping underground cracks using 2D electrical resistivity
tomography: The case of the landslide of Kef Essenoun
phosphate deposit, Djebel Onk
(northeast of Algeria). Arabian Journal of Geosciences 8(10):
7731-7738.
Ozcep, F.,
Yildirim, E., Tezel, O., Asci, M.
& Karabulut, S. 2010. Correlation between electrical
resistivity and soil-water content based artificial intelligent
techniques. International Journal of Physical Sciences 5(1):
047-056.
Reci, H., Jata, I. & Bushati, S. 2015.
Ert method for the detection of buried archaeological objects
in Apollonia & Bylis, Albania.
Romanian Reports in Physics 67(2): 665-672.
Rinaldi,
V.A. & Cuestas, G. 2002. Ohmic conductivity of a compacted silty clay. Journal of Geotechnical and Geoenvironmental Engineering 128(10): 824-835.
Saad, R.,
Muztaza, N.M. & Mohamad, E.T.
2011. The 2D electrical resistivity
tomography (ERT) study for civil and geotechnical engineering
purposes. Electronic Journal of Geotechnical Engineering
16: 1537-1545.
Samsudin, A.R.,
Hamzah, U. & Ramli,
Z. 2007.
An integrated geophysical study of the quaternary
basin at Olak Lempit - Banting Area, Selangor,
Malaysia. Sains Malaysiana 36(2): 159-163.
Sass,
O. 2007.
Bedrock detection and talus thickness assessment
in the European Alps using geophysical methods. Journal
of Applied Geophysics 62(3): 254-269.
Schoor, M.V.
2002.
Detection of sinkholes using 2D electrical
resistivity imaging. Journal of Applied Geophysics
50: 393-399.
Siddiqui,
F.I. & Osman, S.B.A.S. 2012. Integrating geo-electrical
and geotechnical data for soil characterization. International
Journal of Applied Physics and Mathematics 2: 104-106.
Sirhan, A.
& Hamidi, M. 2016. Detection of
soil and groundwater domestic pollution by the electrical resistivity
method in the West Bank, Palestine. Near Surface Geophysics
11(4): 371- 380.
Solberg,
I.L., Hansen, L., Rřnning, J.S., Haugen,
E.D., Dalsegg, E. & Třnnesen, J. 2011.
Combined geophysical and geotechnical approach to ground investigations
and hazard zonation of a quick clay area, Mid Norway. Bulletin
of Engineering Geology and the Environment 71: 119-133.
Sudha, K., Israil, M., Mittal, S. & Rai, J. 2009. Soil characterization using electrical resistivity tomography and
geotechnical investigations. Journal of Applied Geophysics
67: 74-79.
Taioli, F.,
Marchioreto, A., Machado, R. &
Gallas, J.D. F. 2009. Boulders mapping
by using resistivity imaging survey. 11th
International Congress of the Brazilian Geophysical Society.
Telford,
W.M., Geldart, L.P. & Sheriff,
R.E. 1990. Applied
Geophysics. Cambridge: Cambridge University Press.
Terrón, J.M., Mayoral, V.,
Salgado, J.A., Galea, F.A., Odriozola,
V.H.C., Mateos, P. & Pizzo,
A. 2015. Use of soil apparent electrical resistivity
contact sensors for the extensive study of archaeological sites.
Archaeological Prospection 22(4): 269-281.
Tezel,
O. & Ozcep, F. 2003. Relationships
of electrical resistivity and geotechnical parameters.
Proceedings of Conference on Earth Sciences and Electronics, Istanbul,
Turkey.
Whitlow,
R. 2001.
Basic Soil Mechanics. Dorset:
Prentice Hall.
Yahaya, A.S.,
Ahmed, A., Gabda, D. & Na, C.S.
2008. Problem
and Solution in Statistics for Engineers and Scientist.
Selangor: Prentice Hall.
*Corresponding
author; email: hazreek@uthm.edu.my