Sains Malaysiana 46(10)(2017): 1971–1977

http://dx.doi.org/10.17576/jsm-2017-4610-36

 

Sifat Elektrik dan Kerentanan Arus Ulang Alik Superkonduktor Bi(Pb)-Sr-Ca-Cu-O dengan Penambahan In2O3

(Electrical Properties and AC Susceptibility of In2O3 Added Bi(Pb)-Sr-Ca-Cu-O Superconductor)

 

ILHAMSYAH PUTRA ABU BAKAR , NURUL RAIHAN MOHD SUIB, K. AIZAT, J. NUR-AKASYAH, S. RADIMAN & R. ABD-SHUKOR*

 

Pusat Pengajian Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 13 February 2017/Accepted: 2 June 2017

 

 

ABSTRAK

Kesan penambahan In2O3 terhadap superkonduktor (Bi1.6Pb0.4)Sr2Ca2Cu3O10 (In2O3)x (x = 0- 0.1 peratus berat) telah dikaji. Pencirian yang dijalankan ialah pembelauan sinar-X, mikrostrukur, rintangan elektrik, kerentanan arus ulang alik dan ketumpatan arus genting antara butiran. Suhu genting mula, Tc mula dan suhu genting sifar, Tc sifar adalah tertinggi bagi sampel x = 0 iaitu Tc mula = 112 K dan Tc sifar = 90 K. Corak pembelauan sinar-X menunjukkan peratus isi padu fasa (Bi1.6Pb0.4)Sr2Ca2Cu3O10 (Bi-2223) dan (Bi1.6Pb0.4)Sr2CaCu2O8 (Bi-2212) adalah hampir sama untuk semua sampel. Pengukuran kerentanan ulang alik telah dijalankan pada frekuensi 295 Hz dan medan magnet H = 5 Oe. Dua peralihan pada kerentanan ulang alik bagi x = 0 menandakan kewujudan fasa Bi-2223 dan Bi-2212. Suhu pada puncak kehilangan tenaga, Tp untuk kerentanan khayal, χ” adalah tertinggi (74 K dan 104 K) untuk x = 0. Penambahan In2O3 telah menyebabkan Tp beranjak kepada suhu lebih rendah dan ini menunjukkan fluks magnet menembusi antara butiran pada suhu yang semakin menurun apabila In2O3 ditambah. Lengkung puncak Tp juga melebar apabila In2O3 ditambah. Ini menunjukkan gandingan antara butiran yang semakin lemah dan tenaga pengepinan fluks yang menurun. Ketumpatan arus genting antara butiran Jc(Tp) telah diukur menggunakan model Bean dan nilainya adalah antara 16 hingga 20 A cm-2 bagi semua sampel. Satu model skematik arus aruhan bagi bahan polihablur yang mengandungi dua fasa superkonduktor dengan pecahan isi padu yang sama tetapi suhu genting yang berlainan dibincangkan.

 

Kata kunci: (Bi1.6Pb0.4)Sr2Ca2Cu3O10; In2O3; ketumpatan arus genting antara butiran

 

ABSTRACT

The effect of In2O3 addition on (Bi1.6Pb0.4)Sr2Ca2Cu3O10 (In2O3)x (x = 0 - 0.1 weight percent) was investigated. The characterization includes X-ray diffraction method, microstructural, electrical resistance, AC susceptibility and intergrain critical current density. The onset transition temperature, Tc onset and zero resistance temperature, Tc zero was 112 K and 90 K, respectively for the x = 0 sample. XRD patterns showed that the volume fraction of the (Bi1.6Pb0.4)Sr2Ca2Cu3O10 (Bi-2223) and (Bi1.6Pb0.4)Sr2CaCu2O8 (Bi-2212) phase was almost equal. AC susceptibility measurements were performed at a frequency of 295 Hz and magnetic field (H) 5 Oe. Two distinct step-like transitions were observed in the AC susceptibility measurements for x = 0 indicating the existence of Bi-2223 and Bi-2212 phases. The highest peak loss temperature, Tp from the imaginary part χ” of the susceptibility were 74 K and 104 K for the x = 0 sample. Tp shifted to lower temperatures with increasing In2O3 content, indicating that magnetic flux penetrated between the grains at lower temperatures as In2O3 content was increased. The curve of Tp also broadened with increasing In2O3. This indicated the weakening of intergranular coupling and lowering of the flux pinning energy. The intergrain critical current density at the peak temperature Jc(Tp) was measured using the Bean’s model and the values were between 16 and 20 A cm-2 for all samples. A schematic model for induced current in a polycrystalline material with two superconducting phases of equal volume fraction but different transition temperature is discussed.

 

Keywords: (Bi1.6Pb0.4)Sr2Ca2Cu3O10; In2O3; intergrain critical current density

REFERENCES

Abd-Shukor, R. & Kong, W. 2009. Magnetic field dependent critical current density of Bi-Sr-Ca-Cu-O superconductor in bulk and tape form with addition of Fe3O4 magnetic nanoparticles. Journal of Applied Physics 105(7): 07E311.

Abdeen, W., Marahba, S., Awad, R., Abou Aly, A.I., Ibrahim, I.H. & Matar, M. 2016. Electrical and mechanical properties of (Bi, Pb)-2223 substituted by holmium. Journal of Advanced Ceramics 5(1): 54-69.

Annas Al-Sharabi, Sarah Yasmin Tajuddin, Au Diya Fatihah Wan Saffiey, Syazana Jasman, Alwi, H.A., Jumali, M.H. & Abd-Shukor, R. 2016. Excess conductivity analysis of PbO nanoparticle added YBa2Cu3O7-δ superconductor (in Malay). Sains Malaysiana 45(12): 1959-1968.

Azman, N.J., Abdullah, H. & Abd-Shukor, R. 2014. Transport critical current density of (Bi1.6Pb0.4)Sr2Ca2Cu3O10 ceramic superconductor with different nanosized Co3O4 addition. Advances in Condensed Matter Physics 2014: 498747.

Bean, C.P. 1964. Magnetization of high-field superconductors. Reviews of Modern Physics 36: 31-39.

Bilgili, O., Selamet, Y. & Kocabaş, K. 2008. Effects of Li substitution in Bi-2223 superconductors. Journal of Superconductivity and Novel Magnetism 21(8): 439-449.

Gul, I.H., Amin, F., Abbasi, A.Z., Anis-Ur-Rehman, M. & Maqsood, A. 2006. Effect of Ag2CO3 addition on the morphology and physical properties of Bi-based (2223) high- Tc superconductors. Physica C 449(2): 139-147.

Hamid, N.A. & Abd-Shukor, R. 2000. Effects of TiO2 addition on the superconducting properties of Bi-Sr-Ca-Cu-O system. Journal of Materials Science 35(9): 2325-2329.

Hiroshi, M., Yoshiaki, T., Masao, F. & Toshihisa, A. 1988. A new high- Tc oxide superconductor without a rare earth element. Japanese Journal of Applied Physics 27(2A): L209.

Karaca, I., Uzun, O., Kölemen, U., Yilmaz, F. & Sahin, O. 2009. Effects of ZnO addition on mechanical properties of Bi1.84Pb 0.34Sr1.91Ca2.03Cu3.06O10 prepared by a wet technique. Journal of Alloys and Compounds 476(1-2): 486-491.

Nicolas, M., Ph, L., Thord, E., Burger, J.P. & Alvez, M. 1989. Effect of indium substitution in the 80 K and 110 K superconductors of the Bi-Sr-Ca-Cu-O system. Superconductor Science and Technology 2(6): 304-307.

Nkum, R.K., Punnett, A., Ummat, P.K. & Datars, W.R. 1992. Indium doping in the Bi-Pb-Sr-Ca-Cu-O superconducting system. Physica C 194(3): 321-326.

Özçelik, B., Gürsul, M., Sotelo, A. & Madre, M.A. 2014. Improvement of superconducting properties in Na-doped BSCCO superconductor. Journal of Materials Science: Materials in Electronics 26(1): 441-447.

Robaiah, M., Azhan, H., Azman, K., Syamsyir, S.A., Syuhaida, I.N., Azura, C.M.N. & Rosli, M.M. 2016. The influence of Ce-doping on structural and superconducting properties in low-density Bi1.6Pb0.4Sr2Ca2-xCexCu3Oy superconductor. Materials Science Forum 846: 579-585.

Rodrigues, V., De Souza, G., De Lima, R., Carvalho, C. & Zadorosny, R. 2013. Effect of La doping on the structural, electrical, magnetic and morphological properties of the BSCCO system. arXiv preprint arXiv:1311.735.

Yavuz, Ş., Bilgili, Ö. & Kocabaş, K. 2016. Effects of superconducting parameters of SnO2 nanoparticles addition on (Bi, Pb)-2223 phase. Journal of Materials Science: Materials in Electronics 27(5): 4526-4533.

Zhang, J.G., Mccartney, D.G. & Humphreys, C.J. 1990. On the microstructural evolution of sintered Bi-Sr-Ca-Cu-O high-Tc superconductors. Superconductor Science and Technology 3(4): 185-190.

 

*Corresponding author; email: ras@ukm.edu.my

 

 

 

 

 

 

previous