Sains Malaysiana 46(10)(2017):
1971–1977
http://dx.doi.org/10.17576/jsm-2017-4610-36
Sifat Elektrik dan
Kerentanan Arus
Ulang Alik Superkonduktor
Bi(Pb)-Sr-Ca-Cu-O
dengan Penambahan In2O3
(Electrical Properties and AC Susceptibility of In2O3 Added Bi(Pb)-Sr-Ca-Cu-O Superconductor)
ILHAMSYAH
PUTRA
ABU
BAKAR
, NURUL RAIHAN MOHD
SUIB,
K.
AIZAT,
J.
NUR-AKASYAH,
S.
RADIMAN
& R. ABD-SHUKOR*
Pusat Pengajian Fizik Gunaan, Fakulti Sains dan Teknologi,
Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received:
13 February 2017/Accepted: 2 June 2017
ABSTRAK
Kesan penambahan In2O3 terhadap superkonduktor (Bi1.6Pb0.4)Sr2Ca2Cu3O10 (In2O3)x (x
= 0- 0.1 peratus berat)
telah dikaji. Pencirian yang dijalankan
ialah pembelauan
sinar-X, mikrostrukur, rintangan elektrik, kerentanan arus ulang alik dan
ketumpatan arus
genting antara butiran. Suhu genting mula, Tc mula dan suhu genting
sifar, Tc sifar
adalah tertinggi bagi sampel x = 0 iaitu Tc mula =
112 K dan Tc sifar = 90
K. Corak pembelauan
sinar-X menunjukkan peratus isi padu
fasa (Bi1.6Pb0.4)Sr2Ca2Cu3O10 (Bi-2223)
dan (Bi1.6Pb0.4)Sr2CaCu2O8 (Bi-2212)
adalah hampir
sama untuk semua
sampel. Pengukuran
kerentanan ulang alik telah dijalankan
pada frekuensi
295 Hz dan medan
magnet H = 5 Oe. Dua
peralihan pada kerentanan ulang alik bagi x = 0 menandakan kewujudan fasa Bi-2223 dan Bi-2212. Suhu pada puncak
kehilangan tenaga,
Tp untuk
kerentanan khayal,
χ” adalah tertinggi (74 K dan 104 K) untuk x = 0. Penambahan In2O3 telah menyebabkan Tp beranjak
kepada suhu
lebih rendah dan
ini menunjukkan
fluks magnet menembusi antara butiran pada suhu yang semakin menurun apabila In2O3 ditambah. Lengkung puncak Tp juga
melebar apabila
In2O3
ditambah.
Ini menunjukkan gandingan antara butiran yang semakin lemah dan
tenaga pengepinan
fluks yang menurun. Ketumpatan arus genting antara butiran Jc(Tp) telah
diukur menggunakan
model Bean dan nilainya
adalah antara 16 hingga 20 A cm-2 bagi semua sampel.
Satu model skematik
arus aruhan bagi
bahan polihablur
yang mengandungi dua fasa superkonduktor dengan pecahan isi padu yang sama tetapi suhu genting yang berlainan dibincangkan.
Kata kunci: (Bi1.6Pb0.4)Sr2Ca2Cu3O10;
In2O3; ketumpatan
arus genting
antara butiran
ABSTRACT
The effect of In2O3 addition
on (Bi1.6Pb0.4)Sr2Ca2Cu3O10 (In2O3)x (x
= 0 - 0.1 weight percent) was investigated. The characterization
includes X-ray diffraction method, microstructural, electrical
resistance, AC susceptibility and intergrain
critical current density. The onset transition temperature,
Tc onset and zero resistance temperature,
Tc zero was 112 K and 90 K, respectively for the x = 0 sample.
XRD patterns showed that the volume fraction of the (Bi1.6Pb0.4)Sr2Ca2Cu3O10 (Bi-2223)
and (Bi1.6Pb0.4)Sr2CaCu2O8 (Bi-2212)
phase was almost equal. AC susceptibility measurements were
performed at a frequency of 295 Hz and magnetic field (H) 5
Oe. Two distinct step-like transitions
were observed in the AC susceptibility measurements for x =
0 indicating the existence of Bi-2223 and Bi-2212 phases. The
highest peak loss temperature, Tp from
the imaginary part χ” of the susceptibility were 74 K and
104 K for the x = 0 sample. Tp shifted
to lower temperatures with increasing In2O3 content,
indicating that magnetic flux penetrated between the grains
at lower temperatures as In2O3 content
was increased. The curve of Tp also
broadened with increasing In2O3. This
indicated the weakening of intergranular coupling and lowering
of the flux pinning energy. The intergrain
critical current density at the peak temperature Jc(Tp) was measured using the
Bean’s model and the values were between 16 and 20 A cm-2 for
all samples. A schematic model for induced current in a polycrystalline
material with two superconducting phases of equal volume fraction
but different transition temperature is discussed.
Keywords: (Bi1.6Pb0.4)Sr2Ca2Cu3O10; In2O3; intergrain
critical current density
REFERENCES
Abd-Shukor,
R. & Kong, W. 2009. Magnetic field dependent
critical current density of Bi-Sr-Ca-Cu-O
superconductor in bulk and tape form with addition of Fe3O4 magnetic
nanoparticles. Journal of Applied Physics 105(7):
07E311.
Abdeen,
W., Marahba, S., Awad,
R., Abou Aly, A.I., Ibrahim, I.H. & Matar,
M. 2016. Electrical and mechanical properties of (Bi, Pb)-2223 substituted by holmium. Journal of Advanced Ceramics
5(1): 54-69.
Annas Al-Sharabi, Sarah Yasmin Tajuddin,
Au Diya Fatihah Wan Saffiey,
Syazana Jasman,
Alwi, H.A., Jumali, M.H. & Abd-Shukor, R. 2016. Excess conductivity analysis of PbO nanoparticle added YBa2Cu3O7-δ superconductor
(in Malay). Sains Malaysiana
45(12): 1959-1968.
Azman,
N.J., Abdullah, H. & Abd-Shukor,
R. 2014. Transport
critical current density of (Bi1.6Pb0.4)Sr2Ca2Cu3O10 ceramic
superconductor with different nanosized
Co3O4 addition.
Advances in Condensed Matter Physics 2014: 498747.
Bean,
C.P. 1964. Magnetization of high-field superconductors.
Reviews of Modern Physics 36: 31-39.
Bilgili,
O., Selamet, Y. & Kocabaş,
K. 2008. Effects of Li substitution in Bi-2223
superconductors. Journal of Superconductivity and
Novel Magnetism 21(8): 439-449.
Gul,
I.H., Amin, F., Abbasi, A.Z., Anis-Ur-Rehman, M. & Maqsood, A. 2006.
Effect of Ag2CO3 addition
on the morphology and physical properties of Bi-based (2223)
high- Tc superconductors.
Physica C 449(2): 139-147.
Hamid,
N.A. & Abd-Shukor, R. 2000. Effects of TiO2 addition
on the superconducting properties of Bi-Sr-Ca-Cu-O
system. Journal of Materials Science 35(9): 2325-2329.
Hiroshi,
M., Yoshiaki, T., Masao, F. & Toshihisa,
A. 1988. A new high- Tc oxide superconductor without a rare
earth element. Japanese Journal of Applied Physics
27(2A): L209.
Karaca,
I., Uzun, O., Kölemen,
U., Yilmaz, F. & Sahin, O. 2009. Effects of ZnO addition on mechanical properties
of Bi1.84Pb 0.34Sr1.91Ca2.03Cu3.06O10 prepared
by a wet technique. Journal of Alloys and Compounds
476(1-2): 486-491.
Nicolas,
M., Ph, L., Thord,
E., Burger, J.P. & Alvez, M. 1989. Effect of indium substitution in the 80 K and 110 K superconductors
of the Bi-Sr-Ca-Cu-O system.
Superconductor Science and Technology 2(6): 304-307.
Nkum,
R.K., Punnett, A., Ummat, P.K. &
Datars, W.R. 1992. Indium doping in the Bi-Pb-Sr-Ca-Cu-O superconducting system. Physica C 194(3): 321-326.
Özçelik,
B., Gürsul, M., Sotelo, A. & Madre,
M.A. 2014. Improvement of superconducting properties in Na-doped BSCCO superconductor.
Journal of Materials Science: Materials in Electronics 26(1):
441-447.
Robaiah,
M., Azhan, H., Azman,
K., Syamsyir, S.A., Syuhaida, I.N.,
Azura, C.M.N. & Rosli, M.M.
2016.
The influence of Ce-doping on structural and
superconducting properties in low-density Bi1.6Pb0.4Sr2Ca2-xCexCu3Oy superconductor.
Materials Science Forum 846: 579-585.
Rodrigues,
V., De Souza, G., De Lima, R., Carvalho,
C. & Zadorosny, R. 2013. Effect of La doping on the structural, electrical, magnetic and morphological
properties of the BSCCO system. arXiv preprint arXiv:1311.735.
Yavuz,
Ş., Bilgili, Ö. & Kocabaş,
K. 2016. Effects of superconducting parameters
of SnO2 nanoparticles
addition on (Bi, Pb)-2223 phase.
Journal of Materials Science: Materials in Electronics 27(5):
4526-4533.
Zhang,
J.G., Mccartney, D.G. & Humphreys,
C.J. 1990. On the microstructural evolution of sintered Bi-Sr-Ca-Cu-O
high-Tc superconductors. Superconductor
Science and Technology 3(4): 185-190.
*Corresponding author; email: ras@ukm.edu.my