Sains Malaysiana 46(11)(2017): 2091-2099
http://dx.doi.org/10.17576/jsm-2017-4611-09
Case Study on Deformation Control of Upper-Soft
and Lower-Hard Large Span Tunnel Station Using Combined Control
Technology and Monitoring Demonstration
(Kajian
Kes Kawalan Ubah Bentuk Lembut-Atas dan Keras-Bawah Stesen Terowong
Jangka Panjang Menggunakan Teknologi Kawalan Gabungan dan Demonstrasi
Pemantauan)
YANLIANG SHANG1,2, SHOUJI DU1*, TONGYIN
HAN3 & BIAO SHAO4
1Department of Civil Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China
2Key Laboratory of Roads and Railway
Engineering, Safety Control of Ministry of Education
Shijiazhuang Tiedao
University, Shijiazhuang 050043, China
3Party Committee, Langfang Teachers
University, Langfang 065000, China
4Urban Rail Design Institute, The
Third Railway Survey and Design Institute Group Corporation,
Tianjin 300142, China
Received: 8 February
2017/Accepted: 9 June 2017
ABSTRACT
A large number of shallow buried tunnels are built in
the city nowadays and the special strata such as large upper-soft
and lower-hard ground often encountered. Deformation control
of strata is the focus issue related to the construction safety.
Based on Dalian metro Hing Street station with the classical
geological condition of upper-soft and lower-hard ground, this
paper fully used a combined control method including six different
support measures to control the deformation of surrounding rock.
3D finite element model was setup to analyze the construction
effect of combined control measures and the monitoring in-site
was carried out to verify the deformation control effect of
combined control method. It shows that the maximum surface subsidence
value is gradually reduced with the support measures gradually
increasing. In the case of various supports the maximum sedimentation
value is 2.67 cm, which is 42. 1% lower than that of not using
control method and the control effect is obvious. In addition,
it can be seen that the two-layer initial support and additional
large arch foot have the best effect on controlling the ground
surface settlement with reduction of 11.7% and 20.2%, respectively.
The research results can provide practical experience for the
construction of such tunnels, and guide the design and construction
of the tunnel in the future.
Keywords: Combined control method; deformation monitoring
large-span tunnel; rock deformation; upper-soft and lower-hard
ground; 3D numerical simulation
ABSTRAK
Pada masa ini, sebilangan besar terowong bawah tanah
telah dibina di bandar dan strata khas seperti tanah lembut-atas
dan keras-bawah sering ditemui. Kawalan ubah bentuk strata merupakan
isu yang berkaitan dengan keselamatan pembinaan. Berdasarkan
stesen Dailan Metro Hing Street dengan keadaan geologi klasik
tanah lembut-atas dan keras-bawah, kajian ini menggunakan sepenuhnya
kaedah kawalan gabungan termasuklah enam langkah sokongan yang
berbeza untuk mengawal ubah bentuk batu sekitaran. Model unsur
3D terhingga adalah persediaan untuk menganalisis kesan pembinaan
langkah kawalan gabungan dan pemantauan tapak telah dijalankan
untuk mengesahkan kesan kawalan ubah bentuk terhadap kaedah
kawalan gabungan. Ia menunjukkan bahawa nilai maksimum permukaan
amblesan telah mengalami penurunan dan nilai ukuran sokongan
mengalami peningkatan. Dalam kes sokongan yang pelbagai, nilai
pemendapan maksimum ialah 2.67 cm, iaitu 42.1% lebih rendah
daripada nilai tanpa kaedah kawalan dan kesan kawalannya adalah
jelas. Di samping itu, sokongan awal dua lapisan dan penambahan
kaki gerbang besar mempunyai kesan terbaik untuk mengawal pemendapan
permukaan tanah dengan pengurangan sebanyak 11.7% dan 20.2%.
Keputusan penyelidikan dapat memberikan pengalaman praktik bagi
pembinaan terowong tersebut, serta membimbing reka bentuk dan
pembinaan terowong pada masa hadapan.
Kata kunci: Deformasi batu; kaedah kawalan
gabungan; pemantauan ubah bentuk terowong jangka panjang; tanah
lembut-atas dan keras-bawah; simulasi berangka 3D
REFERENCES
Chadwick, S. 2015. Bond street station
upgrade - using 3D analysis to optimise tunnel design. Structural
Engineer 93(7): 24-26.
Esen Sze, Y.S., Jim Yee, T.C., Henry
Kim, I., Osborne, N.H., Chang, K.B. & Siew, R. 2016. Tunnelling
undercrossing existing live MRT tunnels. Tunnelling and Underground
Space Technology 57: 241-256.
Hong, K.R. 2015. State-of-art and
prospect of tunnels and underground works in China. Tunnel
Construction 35(2): 95-107.
Issaka, S. & Ashraf, M.A. 2017.
Impact of soil erosion and degradation on water quality: A review.
Geology, Ecology, and Landscapes 1(1): 1-11.
Lerner, U., Yacobi, T., Levy, I.,
Moltchanov, S.A., Cole-Hunter, T. & Fishbain, B. 2015. The
effect of ego-motion on environmental monitoring. Science
of the Total Environment 533: 8-16.
Li, X.Z., Li, S.C. & Li, S.C.
2011. A study on surface subsidence and deformation characteristics
during construction of shallow buried large span tunnel. Journal
of Rock Mechanics and Engineering 30(S1): 3348-3353.
Moffat, R.A., Beltran, J.F. &
Herrera, R. 2015. Applications of BOTDR fiber optics to the
monitoring of underground structures. Geomechanics and Engineering
9(3): 397-414.
Nasri, V. & Haynes, C.E. 2015.
New tunnel system to eliminate sanitary sewer overflows and
control combined sewer overflows in Hartford, Connecticut. Water
Practice and Technology 10(2): 282-290.
Rabensteiner, K. & Chmelina,
K. 2016. Tunnel monitoring in urban environments. Geomechanik
und Tunnelbau 9(1): 23-28.
Richards, D.J., Wiggan, C.A. &
Powrie, W. 2016. Seepage and pore pressures around contiguous
pile retaining walls. Geotechnique 66(7): 523-532.
Roslee, R., Bidin, K., Musta, B.,
Tahir, S., Tongku, F. & Norhisham, M.N. 2017. GIS application
for comprehensive spatial soil erosion analysis with MUSLE model
in Sandakan town area, Sabah, Malaysia. Geological Behavior
1(1): 1-5.
Xia, C.C., Na, T. X., Peng, G.C.
& Chen, Z.Q. 2016. Discussion on deformation monitoring
accuracy of highway tunnel construction. Tunnel Construction
36(5): 508-512.
Yu, J., Standing, J., Vollum, R.,
Potts, D. & Burland, J. 2015. Stress and strain monitoring
at Tottenham court road station, London, UK. Proceedings
of the Institution of Civil Engineers: Structures and Buildings
168(2): 107-117.
Zainordin, N.S., Ramli, N.A. &
Elbayoumi, M. 2017. Distribution and temporal behaviour of O3
and NO2 near selected schools in Seberang Perai,
Pulau Pinang and Parit Buntar, Perak, Malaysia. Sains Malaysiana
46(2): 197-207.
Zhang, Z.G. & Qiu, W.G. 2015.
Discussion and case study of the rational ratio of rock mass
thickness and tunnel span of mined subway tunnels in upper-soft
and lower-hard ground. Modern Tunneling Technology 52(6):
28-42.
Zhu, H.H. 2015. Design and construction
of shield-bored metro tunnels in hard-soft heterogeneous ground.
Tunnel Construction 35(2): 144-148.
*Corresponding
author; email: sty1980926@163.com