Sains
Malaysiana 46(11)(2017): 2109-2118
http://dx.doi.org/10.17576/jsm-2017-4611-11
The
Application of Airborne Geophysics Data for Rapid Regional Geological
Mapping in Northwestern Angola
(Aplikasi Data Geofizik di Udara untuk Pemetaan Geologi Serantau di Barat
Laut Angola)
HONGRUI
ZHANG1,2*, PENGFEI JIA2, XU ZHANG2
& ZHIGANG WANG2
1Institute of Mineral Resources,
Chinese Academy of Geological Sciences, Beijing 100037, China
2CITIC Construction Co., Ltd., Beijing
100027, China
Received:
29 January 2017/Accepted: 10 June 2017
ABSTRACT
Airborne prospecting (spectrum, magnetics) measurement
is an effectively auxiliary approach for geological mapping.
It effectively measures the magnetic field characteristics and
the surface contents of the most common three radioactive elements
(K,eU and eTh) of nature in the research area. Given the significant
diversities of magnetic characteristics and the radioelements’
contents of different lithological units, these can be applied
into the mapping of shallow overburden area. Ternary MAP is a compound imaging technology, providing the radioelements
contents a simultaneous display on the same pixel. Based on
colour differences, this technology can identify different lithologies
and clithofacial changes in the same lithological unit effectively
in a certain area. With aeromagnetic data conversion and integrated
spectrum images, a good effectiveness of 1:250,000 lithological-structural
mapping has been achieved in the research area of Northwestern
Angola.
Keywords: Aeromagnetics; data processing; rapid geological
mapping; spectrum; 1:250,000
ABSTRAK
Pengukuran prospeksi (spektrum, magnetik) di udara adalah
pendekatan tambahan yang berkesan untuk pemetaan geologi. Ia
secara berkesan mengukur ciri medan magnet dan kandungan permukaan
tiga elemen radioaktif (K, eU dan eTh) yang paling biasa di
kawasan penyelidikan. Memandangkan ciri kepelbagaian magnetik
yang ketara dan kandungan radiounsur daripada unit litologi
berbeza, ini boleh digunakan dalam pemetaan kawasan tebukan
cetek. Ternari MAP
adalah teknologi pengimejan kompaun, memberikan
kandungan radiounsur suatu paparan serentak pada piksel yang
sama. Berdasarkan perbezaan warna, teknologi ini dapat mengenal
pasti pelbagai lapisan dan perubahan klitomuka dalam unit litologi
yang sama secara berkesan di kawasan tertentu. Dengan penukaran
data aeromagnet dan imej spektrum bersepadu, keberkesanan yang
baik 1: 250,000 pemetaan struktur litologi telah dicapai di
kawasan penyelidikan Barat Laut Angola.
Kata kunci: Aeromagnet; pemetaan geologi
yang cepat; pemprosesan data; spektrum; 1: 250,000
REFERENCES
Anderson, H. & Nash, C. 1997.
Integrated lithostructural mapping of the rossing area, Namibia
using high resolution aeromagnetic, radiometric, landsat data
and aerial photographs. Exploration Geophysics 28: 185-191.
Aspin, S.J. & Bierwirth, P.N.
1997. GIS analysis of the effect of forest biomass on gamma-
radiometric images. Paper presented at the 3rd National Forum
on GIS in the Geosciences, Canberra, Australia.
Darnley, A.G. & Ford, K.L. 1987.
Regional airborne gamma-ray survey: A review. Paper presented
at Third Decennial International Conference on Geophysical
and Geochemical Exploration for Minerals and Ground Water,
In Proceedings of Exploration 87, Toronto.
Ford, K.L., Savard, M., Dessau,
J.C. & Pellerin, E. 2001. The role of gamma-ray spectrometry
in radon risk evaluation: A case history from Oka. Geoscience
Canada 28(2): 59-64.
Graham, D.F. & Bonham-Carter,
G.F. 1993. Airborne radiometric data: A tool for reconnaissance
geological mapping using a GIS. Photogrammetric Engineering
and Remote Sensing 58: 1243-1249.
IAEA. 2003. Guidelines for Radioelement
Mapping using Gamma Ray Spectrometry Data. (Vienna, IAEA-TECDOC-1363,
2003). pp. 95-99.
Jaques, A.L., Wellman, P., Whitaker,
A. & Wyborn, D. 1997. High resolution geophysics in modern
geological mapping. AGSO Journal of Australian Geology &
Geophysics 17: 159-174.
Li, B., Wu, H. & Zhao, D. 2016.
Extraction technology about the information of deep sandlithological
type uranium mineralization based on radioactive geophysical
method. Progress in Geophysics 31(2): 683-687.
Lo, B.H. & Pitcher, D.H. 1996.
A case history on the use of regional aeromagnetic and radiometric
data sets for lode gold exploration in Ghana. Annual Meeting
Expanded Abstracts, Society of Exploration Geophysicists. pp.
592-595.
Milligan, P. &
Gunn, P. 1997. Enhancement and Interpretation of Airborne Geophysical
Data. AGSO Journal of Australian Geology and Geophysics 17(2):
63-75.
Reeves, C.V., Reford, S.W. &
Millingan, P.R. 1997. Airborne geophysics: Old methods, new
images. Geophysics and Geochemistry at the millennium. Proceedings
of the Fourth Decennial International Conference on Mineral
Exploration. pp. 13-30.
Ridzuan, A.A., Zahar, U.A.U. &
Noor, N.A.M. 2017. Association of evacuation dimensions towards
risk perception of the Malaysian students who studied at Jakarta,
Medan, and Acheh in Indonesia. Malaysian Journal of Geoscience
1(1): 7-12.
Saidin, N.U., Jumali, M.H.H., Kok,
K.Y. & Ng, I.K. 2016. Formation of high quality concave
using short anodization duration for fabrication of AAO. Sains
Malaysiana 45(12): 1787-1794.
Xiong, S., Jing Tong, Ding, Y.Y.
& Li, Z. 2016. Aeromagnetic data and geological structure
of continental China: A review. Applied Geophysics 13(2):
227-237.
Xiong, S. 2009. The strategic consideration
of the development of China’s airborne geophysical technology.
Geology in China 36(6): 1366-1374.
Yasin, M. 2017. Diagenesis of Miocene
Sandstone in the District Sudunhoti and Poonch, Azad Jammu and
Kashmir, Pakistan. Pakistan Journal of Geology 1(1):
5-7.
Zhang, W. 2004. The application
of high precision aero geophysical integrated survey to geological
mapping. Geophysical and Geochemical Exploration 28(4):
243-286.
*Corresponding author;
email: zhhr2214@163.com