Sains Malaysiana 46(2)(2017): 285–293

http://dx.doi.org/10.17576/jsm-2017-4602-13

 

Effects of Debinding and Sintering Atmosphere on Properties and Corrosion Resistance of Powder Injection Molded 316 L - Stainless Steel

(Kesan Pengikatan dan Pensinteran ke atas Sifat dan Rintangan Kakisan Acuan Suntikan Serbuk 316 L - Keluli Tahan Karat)

 

MUHAMMAD RAFI RAZA1*, FAIZ AHMAD2, NORHAMIDI MUHAMAD3, ABU BAKAR SULONG3, M.A. OMAR4, MAJID NIAZ AKHTAR5, MUHAMMAD ASLAM

& IRFAN SHERAZI1

 

1Department of Mechanical Engineering, COMSATS Institute of Information Technology Sahiwal

Pakistan

 

2Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia

 

3Department of Mechanical and Materials Engineering, Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

4Advanced Materials Research Centre (AMREC) SIRIM, Kulim Hi-Tech Park, 09000 Kulim, Kedah Darul Aman, Malaysia

 

5Department of Physics, COMSATS Institute of Information Technology Lahore, Pakistan

 

Received: 13 June 2015/Accepted: 11 May 2016

 

ABSTRACT

316L stainless steel is a common biomedical material. Currently, biomedical parts are produced through powder injection molding (PIM). Carbon control is the most critical in PIM. Improper debinding can significantly change the properties of the final product. In this work, thermal debinding and sintering were performed in two different furnaces (i.e. laboratory and commercially available furnaces) to study the mechanical properties and corrosion resistance. Debounded samples were sintered in different atmospheres. The samples sintered in inert gas showed enhanced mechanical properties compared with wrought 316L stainless steel and higher corrosion rate than those sintered in the vacuum furnace. The densification and tensile strength of the hydrogen sintered samples increased up to 3% and 51%, respectively, compared with those of the vacuum-sintered samples. However, the samples sintered in inert gas also exhibited reduced ductility and corrosion resistance. This finding is attributed to the presence of residual carbon in debonded samples during debinding.

 

Keywords: Corrosion resistance; debinding; mechanical properties; powder injection molding; weight loss method

 

ABSTRAK

Keluli tahan karat 316L adalah bahan lazim bioperubatan. Pada masa ini, bahagian bioperubatan dihasilkan melalui acuan suntikan serbuk (PIM). Kawalan karbon adalah yang paling kritikal dalam PIM. Pengikatan sumbang boleh mengubah sifat akhir produk. Dalam kertas ini, pengikatan haba dan persinteran telah dijalankan di dua relau berbeza (Makmal dan relau yang tersedia secara komersial) untuk mengkaji sifat mekanik dan rintangan kakisan. Sampel terikat telah disinter dalam atmosfera berbeza. Sampel yang disinter dalam gas lengai yang menunjukkan peningkatan sifat mekanik berbanding dengan keluli tahan karat tempaan 316L dan kadar kakisan yang lebih tinggi berbanding yang disinter dalam vakum relau. Kepadatan dan kekuatan tegangan sampel hidrogen yang disinter meningkat masing-masing kepada 3% dan 51% berbanding dengan sampel yang disinter secara vakum. Walau bagaimanapun, sampel yang disinter dalam gas lengai juga menunjukkan pengurangan rintangan kemuluran dan kakisan. Keputusan kajian ini adalah kerana sifat sisa karbon dalam sampel ikatan semasa pengikatan.

 

Kata kunci: Acuan suntikan serbuk; kaedah kehilangan berat; rintangan kakisan; pengikatan; sifat mekanik

REFERENCES

Beachem, C.D. 1972. A new model for hydrogen-assisted cracking (hydrogen embrittlement). Metallurgical Transactions 3: 441-455.

Becker, B.S., Boltom, J.D. & Eagles, A.M. 2000. Sintering of 316L stainless steels to high density via the addition of chromium-molybdenum dibromide powders Part 1: Sintering performance and mechanical properties. Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications, LHL. pp. 139-152.

Beebhas, C., Mutsuddy, Ford, R.G. 1995. Ceramic Injection Molding. London: Chapman & Hall.

Bostjan Berginc, Zlatko Kampus & Borivoj Sustarsic. 2006. The influence of MIM and sintering-process parameters on the mechanical properties of 316L SS. Materiali in Tehnologije 40: 193-198.

Davis, J.R. 1994. Stainless Steels. West Conshohocken, PA: ASTM International.

Dewidar, M.M., Yoon, H-C. & Lim, J.K. 2006. Mechanical properties of metals for biomedical applications using powder metallurgy process: A review. Metals and Materials 12: 193-206.

Eisenhüttenleute, V.D. 1992. Steel - A Handbook for Materials Research and Engineering: Volume 1: Fundamentals. 1st ed. New York: Springer.

Eliezer, D. 1983. The behaviour of 316L stainless steel in hydrogen. Journal of Materials Science 18: 1540-1547.

García, C., Martín, F., Tiedr, P.d., Blanco, Y., Ruíz-Roman, J.M. & Aparicio, M. 2008. Electrochemical reactivation methods applied to PM austenitic stainless steels sintered in nitrogen-hydrogen atmosphere. Corrosion Science 50: 687-697.

García, C., Martín, F., Tiedra, P.d. & Garcia Cambronero, L. 2007. Pitting corrosion behaviour of PM austenitic stainless steels sintered in nitrogen-hydrogen atmosphere. Corrosion Science 49: 1718-1736.

German, R.M. & Bose, A. 1997. Powder injection molding of metal and ceramics. In Metal Powder Industries Federation. New Jersey: Princeton Press.

Hansen, D.C. 2008. Metal corrosion in the human body: The ultimate bio-corrosion scenario. Electrochem. Soc. Interface 17: 31-34.

Huang, B., Liang, S. & Qu, X. 2003. The rheology of metal injection molding. Journal of Materials Processing Technology 137: 132-137.

Li, H.B., Jiang, Z.H., Cao, Y. & Zhang, Z.R. 2009. Fabrication of high nitrogen austenitic stainless steels with excellent mechanical and pitting corrosion properties. International Journal of Minerals, Metallurgy and Materials 16: 387-392.

Li, Y., Liu, S., Qu, X. & Huang, B. 2003. Thermal debinding processing of 316L stainless steel powder injection molding compacts. Journal of Materials Processing Technology 137: 65-69.

Jamaludin, K.R., Muhamad, N., Ab-Rahman, M.N., M. Amin, S.Y., Ahmad, S., Ibrahim, M.H.I. 2009. Sintering parameter optimization of the SS316L metal injection molding (MIM) compacts for final density using taguchi method, 3rd South East Asian Technical University Consortium, Johor Bahru, Malaysia, pp. 258-262.

Ji, C.H., Loh, N.H., Khor, K.A. & Tor, S.B. 2001. Sintering study of 316L stainless steel metal injection molding parts using Taguchi method: Final density. Materials Science and Engineering Vol. A (311): 74-82.

Khairur Rijal Jamaludin, Norhamidi Muhamad, Mohd Nizam Ab Rahman, Sri Yulis M. Amin, Sufizar Ahmad, Mohd Halim Irwan Ibrahim, Murtadhahadi & Nor Hafiez Mohamad Nor. 2008. Densification of ss316l gas-atomized and water-atomized powder compact, Seminar II - AMReG 08, Port Dickson. p. 8.

Kurgan, N. 2014. Effect of porosity and density on the mechanical and microstructural properties of sintered 316L stainless steel implant materials. Materials & Design 55: 235-241.

Levenfeld, B., Varez, A. & Torralba, J.M. 2002. Effect of residual carbon on the sintering process of M2 high speed steel parts obtained by a modified metal injection molding process. Metallurgical and Materials Transactions A 33: 1843-1851.

Li, C.X. & Bell, T. 2004. Corrosion properties of active screen plasma nitrided 316 austenitic stainless steel. Corrosion Science 46: 1527-1547.

Loh, N.H., Tor, S.B. & Khor, K.A. 2001. Production of metal matrix composite part by powder injection molding. J. Mat. Processing Tech. 108: 398-407.

Martin, F., García, C., Blanco, Y. & Herranz, G. 2014. Influence of sinter-cooling rate on intergranular corrosion of powder metallurgy superaustenitic stainless steel. Corrosion Engineering, Science and Technology 49: 614-623.

Muhammad Ilman Hakimi Chua, Abu Bakar Sulong, Mohd. Fazuri Abdullah & Muhamad, N. 2013. Optimization of injection molding and solvent debinding parameters of stainless steel powder (SS316L) based feedstock for metal injection molding. Sains Malaysiana 42(12): 1743-1750.

Muhammad Rafi Raza, Faiz Ahmad, Omar, M.A., German, R.M. & Ali S. Muhsan. 2013. Role of debinding to control mechanical properties of powder injection molded 316L stainless steel. Advanced Materials Research 699: 875-882.

Omar, M., Subuki, I., Abdullah, N., Zainon, N.M. & Roslani, N. 2012. Processing of water-atomised 316L stainless steel powder using metal injection processes. Journal of Engineering Science 8: 1-13.

Omar, M.A., Ibrahim, R., Sidik, M.I., Mustapha, M. & Mohamad, M. 2003. Rapid debinding of 316L stainless steel injection moulded component. Journal of Materials Processing Technology 140: 397-400.

Rafi Raza, M., Faiz Ahmad, Omar, M.A. & German, R.M. 2012. Effects of cooling rate on mechanical properties and corrosion resistance of vacuum sintered powder injection molded 316 L stainless steel. Journal of Materials Processing Technology 212: 164-170.

Raza, M.R., Ahmad, F., Muhamad, N., Sulong, A.B., Omar, M., Akhtar, M.N. & Aslam, M. 2016. Effects of solid loading and cooling rate on the mechanical properties and corrosion behavior of powder injection molded 316 L stainless steel. Powder Technology 289: 135-142.

Raza, M.R., Ahmad, F., Muhamad, N., Sulong, A.B., Omar, M., Akhtar, M.N., Nazir, M.S., Muhsan, A.S. & Aslam, M. 2015. Effects of Residual Carbon on Microstructure and Surface Roughness of PIM 316L Stainless Steel, InCIEC 2014. New York: Springer. pp. 927-935.

Raza, M.R., Ahmad, F., Omar, M., German, R. & Muhsan, A.S. 2012. Defect analysis of 316LSS during the powder injection moulding process, defect and diffusion forum. Trans Tech Publ. 329: 35-43.

Sobral, A.V.C., Ristow, Jr. W., Azambuja, D.S., Costa, I. & Franco, C.V. 2001. Potentiodynamic tests and electrochemical impedance spectroscopy of injection molded 316L steel in NaCl solution. Corrosion Science 43: 1019-1030.

Trepanier, C., Ramakrishna Venugopalan & Pelton, A.R. 2000. Corrosion resistance and biocompatibility of passivated NiTi. In Shape Memory Implants, edited by Yahia, L. New York: Springer Berlin Heidelberg. pp. 35-45.

Zaky, M.T., Soliman, S. & Farag, S. 2009. Influence of paraffin wax characteristics on the formulation of wax-based binders and their debinding from green molded parts using two comparative techniques. Journal of Materials Processing Technology 209: 5981-5989.

Zlatkov, B.S., Griesmayer, E., Loibl, H., Danninger, H. & Gierl, C. 2008. Recent advances in PIM technology I. Science of Sintering 40: 79-88.

 

 

*Corresponding author; email: rafirazamalik@gmail.com

 

 

 

previous