Sains Malaysiana 46(2)(2017): 285–293
http://dx.doi.org/10.17576/jsm-2017-4602-13
Effects
of Debinding and Sintering Atmosphere on Properties and Corrosion Resistance of
Powder Injection Molded 316 L - Stainless Steel
(Kesan Pengikatan
dan Pensinteran ke atas Sifat dan Rintangan Kakisan Acuan Suntikan
Serbuk 316 L - Keluli Tahan Karat)
MUHAMMAD RAFI RAZA1*, FAIZ AHMAD2, NORHAMIDI MUHAMAD3, ABU BAKAR SULONG3, M.A. OMAR4, MAJID NIAZ AKHTAR5, MUHAMMAD ASLAM
& IRFAN SHERAZI1
1Department
of Mechanical Engineering, COMSATS Institute of Information Technology Sahiwal
Pakistan
2Department
of Mechanical Engineering, Universiti Teknologi PETRONAS, 32610 Bandar Seri
Iskandar, Perak Darul Ridzuan, Malaysia
3Department
of Mechanical and Materials Engineering, Universiti Kebangsaan Malaysia
43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
4Advanced
Materials Research Centre (AMREC) SIRIM, Kulim Hi-Tech Park, 09000 Kulim, Kedah
Darul Aman, Malaysia
5Department of Physics,
COMSATS Institute of Information Technology Lahore, Pakistan
Received:
13 June 2015/Accepted: 11 May 2016
ABSTRACT
316L stainless steel is a common biomedical material. Currently,
biomedical parts are produced through powder injection molding (PIM).
Carbon control is the most critical in PIM. Improper debinding can
significantly change the properties of the final product. In this work, thermal
debinding and sintering were performed in two different furnaces (i.e.
laboratory and commercially available furnaces) to study the mechanical
properties and corrosion resistance. Debounded samples were sintered in
different atmospheres. The samples sintered in inert gas showed enhanced
mechanical properties compared with wrought 316L stainless steel and higher
corrosion rate than those sintered in the vacuum furnace. The densification and
tensile strength of the hydrogen sintered samples increased up to 3% and 51%,
respectively, compared with those of the vacuum-sintered samples. However, the
samples sintered in inert gas also exhibited reduced ductility and corrosion
resistance. This finding is attributed to the presence of residual carbon in
debonded samples during debinding.
Keywords: Corrosion resistance; debinding; mechanical properties;
powder injection molding; weight loss method
ABSTRAK
Keluli tahan karat 316L adalah bahan lazim
bioperubatan. Pada masa ini, bahagian bioperubatan dihasilkan melalui acuan
suntikan serbuk (PIM). Kawalan
karbon adalah yang paling kritikal dalam PIM. Pengikatan
sumbang boleh mengubah sifat akhir produk. Dalam
kertas ini, pengikatan haba dan persinteran telah dijalankan di dua relau
berbeza (Makmal dan relau yang tersedia secara komersial) untuk mengkaji sifat
mekanik dan rintangan kakisan. Sampel terikat telah disinter dalam
atmosfera berbeza. Sampel yang disinter dalam gas lengai yang menunjukkan peningkatan
sifat mekanik berbanding dengan keluli tahan karat tempaan 316L dan kadar kakisan yang lebih tinggi berbanding yang disinter
dalam vakum relau. Kepadatan dan kekuatan tegangan sampel hidrogen yang
disinter meningkat masing-masing kepada 3% dan 51% berbanding dengan sampel
yang disinter secara vakum. Walau bagaimanapun, sampel yang
disinter dalam gas lengai juga menunjukkan pengurangan rintangan
kemuluran dan kakisan. Keputusan kajian ini adalah kerana
sifat sisa karbon dalam sampel ikatan semasa pengikatan.
Kata kunci: Acuan suntikan
serbuk; kaedah kehilangan berat; rintangan kakisan; pengikatan; sifat mekanik
REFERENCES
Beachem, C.D. 1972. A new model for
hydrogen-assisted cracking (hydrogen embrittlement). Metallurgical
Transactions 3: 441-455.
Becker, B.S., Boltom, J.D.
& Eagles, A.M. 2000. Sintering of 316L stainless steels to high density via the addition of
chromium-molybdenum dibromide powders Part 1: Sintering performance and
mechanical properties. Proceedings of the Institution of
Mechanical Engineers. Part L, Journal of materials, design and
applications, LHL. pp. 139-152.
Beebhas, C., Mutsuddy, Ford, R.G. 1995. Ceramic Injection Molding. London: Chapman
& Hall.
Bostjan Berginc, Zlatko Kampus & Borivoj
Sustarsic. 2006. The influence of MIM and sintering-process parameters on the
mechanical properties of 316L SS. Materiali in Tehnologije 40: 193-198.
Davis, J.R. 1994. Stainless Steels. West
Conshohocken, PA: ASTM International.
Dewidar, M.M., Yoon, H-C. & Lim, J.K. 2006.
Mechanical properties of metals for biomedical applications using powder
metallurgy process: A review. Metals and Materials 12: 193-206.
Eisenhüttenleute, V.D. 1992. Steel - A
Handbook for Materials Research and Engineering: Volume 1: Fundamentals. 1st ed. New York: Springer.
Eliezer, D. 1983. The
behaviour of 316L stainless steel in hydrogen. Journal of Materials
Science 18: 1540-1547.
García, C., Martín, F.,
Tiedr, P.d., Blanco, Y., Ruíz-Roman, J.M. & Aparicio, M. 2008. Electrochemical reactivation methods applied to
PM austenitic stainless steels sintered in nitrogen-hydrogen atmosphere. Corrosion
Science 50: 687-697.
García, C., Martín, F.,
Tiedra, P.d. & Garcia Cambronero, L. 2007. Pitting corrosion behaviour of PM austenitic stainless steels
sintered in nitrogen-hydrogen atmosphere. Corrosion Science 49:
1718-1736.
German,
R.M. & Bose, A. 1997. Powder injection molding of metal
and ceramics. In Metal Powder Industries
Federation. New Jersey: Princeton Press.
Hansen,
D.C. 2008. Metal corrosion in the human body: The ultimate bio-corrosion
scenario. Electrochem. Soc. Interface 17: 31-34.
Huang, B., Liang, S. & Qu, X. 2003. The rheology of metal injection molding. Journal of
Materials Processing Technology 137: 132-137.
Li, H.B., Jiang, Z.H., Cao, Y. & Zhang, Z.R. 2009. Fabrication of high nitrogen austenitic stainless steels with
excellent mechanical and pitting corrosion properties. International
Journal of Minerals, Metallurgy and Materials 16: 387-392.
Li, Y., Liu, S., Qu, X. & Huang, B. 2003. Thermal debinding processing of 316L stainless steel powder
injection molding compacts. Journal of Materials Processing
Technology 137: 65-69.
Jamaludin, K.R., Muhamad, N., Ab-Rahman, M.N., M. Amin,
S.Y., Ahmad, S., Ibrahim, M.H.I. 2009. Sintering
parameter optimization of the SS316L metal injection molding (MIM) compacts for
final density using taguchi method, 3rd South East Asian Technical
University Consortium, Johor Bahru, Malaysia, pp. 258-262.
Ji,
C.H., Loh, N.H., Khor, K.A. & Tor, S.B. 2001. Sintering study of 316L stainless
steel metal injection molding parts using Taguchi method: Final density. Materials
Science and Engineering Vol. A (311): 74-82.
Khairur
Rijal Jamaludin, Norhamidi Muhamad, Mohd Nizam Ab Rahman, Sri Yulis M. Amin,
Sufizar Ahmad, Mohd Halim Irwan Ibrahim, Murtadhahadi & Nor Hafiez Mohamad
Nor. 2008. Densification of ss316l gas-atomized and water-atomized powder
compact, Seminar II - AMReG 08, Port Dickson. p. 8.
Kurgan, N. 2014. Effect of porosity
and density on the mechanical and microstructural properties of sintered 316L
stainless steel implant materials. Materials & Design 55:
235-241.
Levenfeld, B., Varez, A. & Torralba, J.M. 2002. Effect of residual carbon on the sintering process of M2 high speed steel parts
obtained by a modified metal injection molding process. Metallurgical and
Materials Transactions A 33: 1843-1851.
Li, C.X. & Bell, T. 2004. Corrosion properties of active screen plasma nitrided 316
austenitic stainless steel. Corrosion Science 46: 1527-1547.
Loh,
N.H., Tor, S.B. & Khor, K.A. 2001. Production of metal
matrix composite part by powder injection molding. J. Mat. Processing
Tech. 108: 398-407.
Martin, F., García, C., Blanco, Y. & Herranz, G. 2014. Influence of sinter-cooling rate on intergranular corrosion of powder metallurgy
superaustenitic stainless steel. Corrosion Engineering, Science and
Technology 49: 614-623.
Muhammad
Ilman Hakimi Chua, Abu Bakar Sulong, Mohd. Fazuri Abdullah
& Muhamad, N. 2013. Optimization of injection molding and solvent
debinding parameters of stainless steel powder (SS316L) based feedstock for
metal injection molding. Sains Malaysiana 42(12): 1743-1750.
Muhammad
Rafi Raza, Faiz Ahmad, Omar, M.A., German, R.M. & Ali S. Muhsan. 2013. Role
of debinding to control mechanical properties of powder injection molded 316L
stainless steel. Advanced Materials Research 699: 875-882.
Omar, M., Subuki, I., Abdullah, N., Zainon, N.M. &
Roslani, N. 2012. Processing of water-atomised 316L
stainless steel powder using metal injection processes. Journal of
Engineering Science 8: 1-13.
Omar, M.A., Ibrahim, R., Sidik, M.I., Mustapha, M. &
Mohamad, M. 2003. Rapid debinding of 316L stainless
steel injection moulded component. Journal of Materials Processing
Technology 140: 397-400.
Rafi Raza, M., Faiz Ahmad, Omar, M.A. & German, R.M.
2012. Effects of cooling rate on mechanical properties and
corrosion resistance of vacuum sintered powder injection molded 316 L stainless
steel. Journal of Materials Processing Technology 212: 164-170.
Raza, M.R., Ahmad, F., Muhamad, N., Sulong, A.B., Omar, M.,
Akhtar, M.N. & Aslam, M. 2016. Effects of solid loading and cooling
rate on the mechanical properties and corrosion behavior of powder injection
molded 316 L stainless steel. Powder Technology 289: 135-142.
Raza, M.R., Ahmad, F., Muhamad, N., Sulong, A.B., Omar, M.,
Akhtar, M.N., Nazir, M.S., Muhsan, A.S. & Aslam, M. 2015. Effects of Residual Carbon on Microstructure and Surface
Roughness of PIM 316L Stainless Steel, InCIEC 2014. New York:
Springer. pp. 927-935.
Raza, M.R., Ahmad, F., Omar, M., German, R. & Muhsan,
A.S. 2012. Defect analysis of 316LSS during the powder injection
moulding process, defect and diffusion forum. Trans Tech Publ. 329:
35-43.
Sobral,
A.V.C., Ristow, Jr. W., Azambuja, D.S., Costa, I. & Franco, C.V. 2001.
Potentiodynamic tests and electrochemical impedance spectroscopy of injection
molded 316L steel in NaCl solution. Corrosion Science 43: 1019-1030.
Trepanier,
C., Ramakrishna Venugopalan & Pelton, A.R. 2000. Corrosion resistance and
biocompatibility of passivated NiTi. In Shape Memory Implants, edited by
Yahia, L. New York: Springer Berlin Heidelberg. pp. 35-45.
Zaky,
M.T., Soliman, S. & Farag, S. 2009. Influence of paraffin wax
characteristics on the formulation of wax-based binders and their debinding
from green molded parts using two comparative techniques. Journal of
Materials Processing Technology 209: 5981-5989.
Zlatkov, B.S., Griesmayer, E., Loibl, H., Danninger, H.
& Gierl, C. 2008. Recent advances in PIM technology I. Science
of Sintering 40: 79-88.
*Corresponding
author; email: rafirazamalik@gmail.com
|