Sains Malaysiana 46(4)(2017): 567–573

http://dx.doi.org/10.17576/jsm-2017-4604-08

 

Assessment of Abdominal Obesity using 3D Body Scanning Technology

(Penilaian Keobesan Abdomen menggunakan Teknologi Pengimbasan Badan 3D)

 

SUHANA JAPAR1, THAMILVAANI MANAHARAN2, ASMA AHMAD SHARIFF2,4, ABDUL MAJID MOHAMED2,4, AMIR FEISAL MERICAN ALJUNID MERICAN*2,3

 

1Institute of Graduate Studies, University of Malaya, 50603 Kuala Lumpur, Federal Territory

Malaysia

 

2Centre of Research for Computational Sciences and Informatics in Biology, Bioindustry, Environment, Agriculture and Healthcare (CRYSTAL), University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

2Institute of Biological Sciences, Faculty of Science, Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare (CRYSTAL)

University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

3Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

4Centre for Foundation Studies in Science, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

Received: 15 July 2016/Accepted: 30 September 2016

 

ABSTRACT

Abdominal obesity is an important contributor for health risk factors such as hypertension, diabetes mellitus and hypercholesterolemia. Therefore, the application of a proper method is important prerequisite in performing abdominal obesity assessment. In this study, we applied 3D body scanning technology to measure waist circumference (WC), hip circumference (HC) and waist to hip ratio (WHR) precisely in an effort to improve the current health assessment for abdominal obesity. A total of 200 Malaysian women with sedentary lifestyle, aged between 18 and 60 years participated in this study. Paired t-test was used to determine the differences between the automated (3D body scanner) and manual measurements of WC, HC and WHR. 3D body scanner measurements show that 27% of subjects had mild abdominal obesity (80 - 90 cm) and 34.5% of subjects had severe abdominal obesity (≥90 cm) based on WC cutoff points. Based on WHR cutoff points, 57% of subjects had abdominal obesity (≥0.85) while the remaining were without abdominal obesity (<0.85). Lower percentages of abdominal obesity prevalence were reported for both WC and WHR categories using manual measurements. We also found that in normal BMI category, 8.5% of subjects have mild abdominal obesity based on automated measurements while only 5.5% of subjects were identified on manual measurements. The result of this study indicated that 3D body scanner provided better assessment method as it enables detection of abdominal obesity in more subjects based on WC and WHR categories. Public agencies are encouraged to consider the application of 3D body scanning in health assessment of abdominal obesity.

 

Keywords: Abdominal obesity; body mass index; waist circumference; waist to hip ratio; 3D body scanner

 

ABSTRAK

Keobesan abdomen adalah penyumbang penting kepada faktor risiko kesihatan seperti tekanan darah tinggi, kencing manis dan hiperkolesterolemia. Oleh itu, penggunaan kaedah yang betul adalah satu komponen penting dalam menjalankan penilaian keobesan abdomen. Dalam kajian ini, kami menggunakan teknologi pengimbasan badan tiga dimensi (3D) untuk mengukur lilitan pinggang, lilitan pinggul dan nisbah pinggang ke pinggul secara tepat dalam usaha untuk meningkatkan penilaian kesihatan semasa bagi keobesan abdomen. Seramai 200 wanita Malaysia yang berusia antara 18 hingga 60 tahun mengambil bahagian dalam kajian ini. Ujian-t berpasangan digunakan untuk menentukan perbezaan antara automatik (pengimbas badan 3D) dan ukuran manual WC, HC dan WHR. Ukuran pengimbas badan 3D menunjukkan bahawa 27% daripada subjek mempunyai keobesan abdomen sederhana (80 - 90 cm) dan 34.5% daripada subjek mempunyai keobesan abdomen teruk (≥90 cm) berdasarkan kategori WC. Berdasarkan kategori WHR, 57% daripada subjek mempunyai keobesan abdomen (≥0.85) manakala selebihnya adalah tanpa keobesan abdomen (<0.85). Peratusan yang lebih rendah untuk keobesan abdomen dilaporkan bagi kedua-dua kategori WC dan WHR menggunakan ukuran manual. Kami juga mendapati bahawa dalam kategori indeks jisim tubuh (BMI) normal, 8.5% daripada subjek mempunyai keobesan abdomen yang sederhana berdasarkan pengukuran automatik manakala hanya 5.5% daripada subjek berdasarkan ukuran manual. Hasil kajian ini menunjukkan bahawa pengimbas badan 3D menyediakan kaedah penilaian yang lebih baik kerana ia membolehkan pengesanan lebih banyak subjek yang mempunyai keobesan abdomen berdasarkan kategori WC dan WHR. Agensi awam digalakkan untuk mempertimbangkan penggunaan pengimbasan badan 3D dalam penilaian kesihatan untuk keobesan abdomen.

 

Kata kunci: Indeks jisim tubuh; keobesan abdomen; lilitan pinggang; nisbah pinggang ke pinggul; pengimbas badan 3D

REFERENCES

Chopra, S.M., Misra, A., Gulati, S. & Gupta, R. 2013. Overweight, obesity and related non-communicable diseases in Asian Indian girls and women. European Journal of Clinical Nutrition 67(7): 688-696.

Dong, J., Ni, Y.Q., Chu, X., Liu, Y.Q., Liu, G.X., Zhao, J., Yang, Y.B. & Yan, Y.X. 2015. Association between the abdominal obesity anthropometric indicators and metabolic disorders in a Chinese population. Public Health 131: 3-10.

Fryar, C.D., Gu, Q. & Ogden, C.L. 2012. Anthropometric reference data for children and adults: United States, 2007- 2010. Vital and Health Statistics 11(252): 1-48.

Han, H., Nam, Y. & Choi, K. 2010. Comparative analysis of 3D body scan measurements and manual measurements of size Korea adult females. International Journal of Industrial Ergonomics 40(5): 530-540.

IBM SPSS Statistics for windows. Version 22.0. IBM Corp. Armonk, NY: IBM Corp. 2013.

Jaeschke, L., Steinbrecher, A. & Pischon, T. 2015. Measurement of waist and hip circumference with a body surface scanner: Feasibility, validity, reliability, and correlations with markers of the metabolic syndrome. PloS one 10(3): e0119430.

Kuehnapfel, A., Ahnert, P., Loeffler, M., Broda, A. & Scholz, M. 2016. Reliability of 3D laser-based anthropometry and comparison with classical anthropometry. Scientific Reports. p. 6.

National Health and Morbidity Survey (NHMS): http://www. moh.gov.my/index.php/file_manager/dl_item/ (Accessed on 1 March 2015).

Norafidah, A.R., Azmawati, M.N. & Norfazilah, A. 2013. Factors influencing abdominal obesity by waist circumference among normal BMI population. Malaysian Journal of Public Health Medicine 13(1): 37-47.

Paquette, S. 1996. 3D scanning in apparel design and human engineering. Computer Graphics and Applications 16(5): 11-15.

Pepper, M.R., Freeland-Graves, J.H. & Yu, W. 2010. Validation of a 3-dimensional laser body scanner for assessment of waist and hip circumference. Journal of the American College of Nutrition 29(3): 179-188.

Simmons, K.P. & Istook, C.L. 2002. 3-D body scanning measurement procedures: Are they the same as traditional physical anthropometric procedures? In Proceedings of the International Foundation of Fashion Technology Institutes (IFFTI) 4th International Conference, Nov 7-11, Hong Kong Polytechnic University, Hong Kong. pp. 579-590.

Soileau, L., Bautista, D., Johnson, C., Gao, C., Zhang, K., Li, X., Heymsfield, S.B., Thomas, D. & Zheng, J. 2016. Automated anthropometric phenotyping with novel Kinect-based three-dimensional imaging method: Comparison with a reference laser imaging system. European Journal of Clinical Nutrition 70(4): 475-481.

Stefan, D.B., Wohlgemuth, S.D., Gilbert, D.A. 2011. Theory and practical steps to introducing a new 3D public health indicator to replace BMI using existing population based multidimensional reference measurement sets. 5th International 3D Technologies Conference. Lugano, Switzerland. pp. 299-312.

Treleaven, P. & Wells, J. 2007. 3D body scanning and healthcare applications. Computer 40(7): 28-34.

Wang, S., Liu, Y., Li, F., Jia, H., Liu, L. & Xue, F. 2015. A novel quantitative body shape score for detecting association between obesity and hypertension in China. BMC Public Health 15(1): 7.

Wells, J.C.K., Ruto, A. & Treleaven, P. 2008. Whole-body three-dimensional photonic scanning: A new technique for obesity research and clinical practice. International Journal of Obesity 32: 232-238.

Wells, J.C.K., Treleaven, P. & Charoensiriwath, S. 2012. Body shape by 3-D photonic scanning in Thai and UK adults: Comparison of national sizing surveys. International Journal of Obesity 36: 148-154.

WHO expert consultation. 2004. Appropriate body-mass index for Asian ppopulations and its implications for policy and interventions strategies. The Lancet 36: 157-163.

Wu, S., Wang, R., Jiang, A., Ding, Y., Wu, M., Ma, X., Zhao, Y. & He, J. 2014. Abdominal obesity and its association with

health-related quality of life in adults: A population-based study in five Chinese cities. Health and Quality of Life Outcomes 12(1): 100.

Yang, C.Y., Peng, C.Y., Liu, Y.C., Chen, W.Z. & Chiou, W.K. 2011. Surface anthropometric indices in obesity-related metabolic diseases and cancers. Chang Gung Medical Journal 34(1): 1-22.

 

 

*Corresponding author; email: merican@um.edu.my

 

 

 

 

previous