Sains Malaysiana 46(4)(2017): 637–644

http://dx.doi.org/10.17576/jsm-2017-4604-017

 

Bifunctional Regenerated Cellulose Membrane Containing TiO2 Nanoparticles

for Absorption and Photocatalytic Decomposition

(DwiFungsi Membran Selulosa yang Terjana Semula dengan Kandungan TiO2 untuk

Proses Penyerapan dan Penguraian secara Fotopemangkinan)

 

 

EVYAN YANG CHIA YAN1,2, SARANI ZAKARIA1*, CHIN HUA CHIA1

& THOMAS ROSENAU3

 

1Bioresources and Biorefinery Laboratory, School of Applied Physics, Faculty of Science

and Technology,Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan

Malaysia

 

2Department of Applied Sciences, Faculty of Science and Technology, Nilai University, 1, Persiaran Universiti, 71800 Nilai, Negeri Sembilan Darul Khusus, Malaysia

 

3Division of Chemistry of Renewable Resource, Muthgasse 18, A-1190 Wien, Universität für Bodenkultur Wien, University of Natural Resources and Life Science, Vienn, Austria

 

Received: 20 April 2016/Accepted: 20 September 2016

 

 

ABSTRACT

A simple and green method was presented to embed TiO2 on regenerated cellulose membranes via cellulose dissolution-regeneration process. The physical, chemical and mechanical properties of the composite membranes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier- Transform Infrared (FTIR), ultraviolet (UV) - visible spectroscopy and tensile test. The results indicated that cotton linter has been converted from cellulose I to cellulose II after the regeneration process, while the TiO2 nanoparticles embedded inside the membrane maintaining its original crystal structures. The TiO2 composite membranes possessed high ability of water absorption with total pore volume ranged from 0.45±0.01 to 0.53±0.02 cm3/g. The elongation at break of the prepared membranes increased 29% averagely from dry state to wet state. The tensile strength of the membranes remained at a minimum value of 0.50±0.03 MPa in wet state thus enabled the films to withstand in wet for long period of time under weak UV irradiation. The regenerated cellulose membranes with TiO2 performed well in photocatalytic activity while exhibiting distinct absorption abilities. This study provides a potential application in energy-saving decomposition system in which the dye compound can be easily removed via two simultaneous pathways: Absorption and photocatalytic decomposition.

 

Keywords: Absorption; mechanical properties; photocatalysis; regenerated celloluse

 

ABSTRAK

Kaedah yang mudah telah dikemukakan untuk menerap TiO2 pada membran selulosa yang diperbaharui melalui proses pelarutan-penjanaan semula selulosa. XRD, SEM, FTIR, Spektroskopi UV - Vis dan mesin ujian tegangan digunakan untuk mencirikan sifat fizikal, kimia dan mekanik membran komposit. Hasil analisis menunjukkan linter kapas telah berubah daripada selulosa I kepada selulosa II selepas proses penjanaan semula. Manakala, TiO2 yang bertabur dalam membran mengekalkan struktur kristalnya. Membran komposit TiO2 yang dihasilkan memiliki keupayaan penyerapan air yang tinggi dengan jumlah liang dari 0.45±0.01-0.53±0.02 cm3/g. Keseluruhannya, pemanjangan membran kering meningkat sebanyak 29% berbanding dengan membran dalam keadaan basah. Membran yang dihasilkan dapat mengekalkan kekuatan tegangan pada nilai minimum 0.05±0.03 MPa dalam keadaan basah untuk tempoh yang panjang di bawah sinaran UV yang lemah. Membran selulosa berkandungan TiO2 menunjukkan prestasi yang baik dalam aktiviti foto-pemangkinan sementara mempamerkan keupayaan penyerapan. Kajian ini berpotensi diaplikasikan dalam sistem penguraian dengan menjimatkan kos dan tenaga. Sebatian boleh diuraikan dengan mudah melalui dua cara serentak: penjerapan dan penguraian secara foto-pemangkinan.

 

Kata kunci: Foto-pemangkinan; membran terjana semula; penyerapan; sifat mekanik

 

REFERENCES

Cai, J., Zhang, L., Zhou, J., Qi, H., Chen, H. Kondo, T., Chen, X. & Chu, B. 2007. Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: Structure and properties. Advanced Materials 19(6): 821-825.

Choi, H., Stathtos, E. & Dionysiou, D.D. 2007. Photocatalytic TiO2 film and membranes for the development of efficient wastewater treatment and reuse system. Desalination 202: 199-206.

Chook, S.W., Chia, C.H., Zakaria, S., Ayob, M.K., Huang, N.M., Neoh, H.M. & Jamal, R. 2015. Antibacterial hybrid cellulose-graphene oxide nanocomposite immobilized with silver nanoparticles. RSC Advances 33: 26263-26268.

Djafer, I., Ayral, A. & Ouagued, A. 2010. Robust synthesis and performance of a titania-based ultrafiltration membrane with photocatalytic properties. Separation and Purification Technology 75: 198-203.

Hernandez-Uresti, D.B., Sánchez-Martínez, D., Martínez-de la Cruz, A., Sepúlveda-Guzmán, S. & Torres-Martínez, L.M. 2014. Characterization and photocatalytic properties of hexagonal and monoclinic WO3 prepared via microwave-assisted hydrothermal synthesis. Ceramic International 40(3): 4767-4775.

Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C. & Herrmann, J-M. 2001. Photocatalytic degradation pathway of methylene blue in water. Applied Catalysis B: Environmental 31: 145-157.

Kaco, H., Zakaria, S., Razali, N.F., Chia, C.H., Zhang, L. & Jani, S.M. 2014. Properties of cellulose hydrogel from kenaf core prepared via pre-cooled dissolving method. Sains Malaysiana 43(8): 1221-1229.

Lee, K.M., Abdul, H.A., Mohd, Z.H. & Zulkarnain. 2014. Synthesis and photocatalysis of ZnO/γ-Fe2O3 nanocomposite in degrading herbicide 2,4-dichlorophenoxyacetic acid. Sains Malaysiana 43(3): 437-441.

Leong, S., Razmjou, A., Wang, K., Hapgood, K., Zhang, X. & Wang, H. 2014. TiO2 based photocatalytic membrane: A review. Journal of Membrane Science 472: 167-184.

Liu, H.Y., Liu, D.G., Yao, F. & Wu, Q.L. 2010. Fabrication and properties of transparent polymethymethacrylate/cellulose nanocrystal composites. BioTechnology 101: 5685- 5692.

Liu, S., Wang, X., Zhao, W., Wang, K., Sang, H. & He, Z. 2013. Synthesis, characterization and enhanced photocatalytic performance of Ag2S-cuopled ZnO/ZnS core/shell nanorods. Journal Alloys Compound 568: 84-91.

Mital, G.S. & Manoj, T. 2011. A review of TiO2 nanoparticles. Chinese Science Bulletin 56: 1639-1657.

Mohammad, S., Mat, U.W., Wong, T.W., Noel, I.A., Raheleh, H.P. & Abdirahman, A.Y. 2014. Bionanocomposite of regenerated cellulose/zeolite prepared using environmentally benign ionic liquid solvent. Carbohydrate Polymer 106: 326-334.

Pojanavaraphan, T., Liu, L., Ceylan, D., Okay, O., Magaraphan, R. & Schiraldi, D.A. 2011. Cellulose cross-link natural rubber (NR)/clay aerogel composite. Macromolecules 44: 923-931. DOI 10.1021/ma102443k.

Rahim, S., Radiman, S. & Hamzah, A. 2012. Inactivation of Escherichia coli under flourescent lamp using TiO2 nanoparticles synthesized via sol gel method. Sains Malaysiana 41(2): 219-224.

Rahimpour, A., Madaeni, S.S., Taheri, A.H. & Mansourpanah, Y. 2008. Coupling TiO2 nanoparticles with UV irradiation for modification of polyethersulfone ultra-filtration membranes. Journal of Membrane Science 313: 158-169.

Ruslime, C.A., Razali, H. & Khairul, W.M. 2011. Catalytic study on TiO2 photocatalyst synthesised via microemulsion method on atrazine. Sains Malaysiana 40(8): 897- 902.

Teh, C.M. & Mohamed, A.R. 2011. Roles of titanium and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: A review. Journal of Alloy Compound 509: 1648-1660.

Wan, F.K., Ho, L.N., Ong, S.A., Wong, Y.S., Nik, A.Y. & Fahmi, R. 2015. Decolorization and mineralization of Batik wastewater through solar photocatalytic process. Sains Malaysiana 44(4): 607-612.

Zhang, X., Wang, Y., You, Y., Meng, H., Zhang, J. & Xu, X. 2012. Preparation, performance and adsorption activity of TiO2 nanoparticles entrapped PVDF hybrid membranes. Applied Surface Science 261: 660-665.

Zhu, T., Lin, Y., Hu, X., Lin, W., Yu, P. & Huang, C. 2012. Preparation and characterization of TiO2-regenerated cellulose inorganic-polymer hybrid membranes for dehydration of caprolactam. Carbohydrate Polymers 87: 901-909.

 

 

*Corresponding author; email: szakaria@ukm.edu.my

 

 

 

 

previous