Sains Malaysiana 46(4)(2017): 667–675

http://dx.doi.org/10.17576/jsm-2017-4604-20

 

High Strength Lightweight Aggregate Concrete using Blended Coarse Lightweight Aggregate Origin from Palm Oil Industry

(Konkrit Agregat Ringan Kekuatan Tinggi menggunakan Gabungan Kasar Ringan Agregat Asal daripada Industri Minyak Sawit)

 

MUHAMMAD ASLAM1*, PAYAM SHAFIGH2,3 & MOHD ZAMIN JUMAAT1

 

1Department of Civil Engineering, Faculty of Engineering, University of Malaya

50603 Kuala Lumpur, Federal Territory, Malaysia

 

2Department of Building Surveying, Faculty of Built Environment, University of Malaya

50603 Kuala Lumpur, Federal Territory, Malaysia

3Center for Building, Construction & Tropical Architecture (BuCTA), Faculty of Built Environment, University of Malaya, 50603 Kuala Lumpur, Malaysia

 

Received: 4 September 2015/Accepted: 14 October 2016

 

ABSTRACT

The benefits of using structural lightweight concrete in construction industry, particularly in high rise buildings, over normal weight concrete are numerous. The main method of producing structural lightweight concrete is the use of lightweight aggregates instead of ordinary aggregates in concrete. Due to the limited resources for natural and artificial lightweight aggregates, the alternative sources for lightweight aggregates should be discovered from industrial wastes. Oil palm shell (OPS) and oil-palm-boiler clinker (OPBC) are two solid wastes from palm oil industry and are available in abundance in tropical regimes. The use of just OPS as coarse lightweight aggregate in concrete mixture has some drawbacks for concrete. The aim of this study was to investigate engineering properties of a lightweight concrete containing both of these aggregates. For this purpose, in this study, 50% (by volume) of OPS was replaced with OPBC in an OPS lightweight concrete. The test results showed that when OPS was substituted with OPBC, significant improvement was observed in the compressive, splitting tensile and flexural strengths. In addition, initial and final water absorption as well as drying shrinkage strain of blended coarse lightweight aggregate concrete were significantly less than OPS concrete.

 

Keywords: Clinker; drying shrinkage; lightweight aggregate; mechanical properties; oil palm shell

 

 

ABSTRAK

Terdapat banyak faedah menggunakan struktur konkrit ringan dalam industri pembinaan, terutamanya pada bangunan tinggi, berbanding konkrit biasa. Kaedah utama menghasilkan struktur konkrit ringan adalah penggunaan agregat ringan dan bukannya biasa agregat dalam konkrit. Oleh kerana sumber yang terhad untuk agregat ringan yang asli dan tiruan, sumber alternatif untuk agregat ringan harus diterokai daripada sisa industri. Tempurung kelapa sawit (OPS) dan klinker dandang kelapa-sawit (OPBC) adalah dua sisa pepejal daripada industri minyak sawit dan didapati dengan banyaknya dalam rejim tropika. Penggunaan OPS sahaja sebagai agregat ringan kasar dalam campuran konkrit mempunyai beberapa kelemahan untuk konkrit. Tujuan kajian ini adalah untuk mengkaji sifat kejuruteraan konkrit ringan yang mengandungi kedua-dua agregat ini. Bagi tujuan kajian ini, 50% (isi padu) daripada OPS telah digantikan dengan OPBC untuk konkrit ringan OPS. Keputusan ujian menunjukkan apabila OPS digantikan dengan OPBC, peningkatan ketara diperhatikan di dalam mampatan, pemecahbelahan tegangan dan kekuatan lenturan. Di samping itu, serapan awal dan akhir air serta strain pengecutan kering konkrit campuran kasar agregat ringan adalah jauh berkurangan daripada konkrit OPS.

 

Kata kunci: Agregat ringan; klinker; pengecutan kering; sifat mekanik; tempurung kelapa sawit


REFERENCES

 

Abdullah, A.A.A. 1996. Chapter 10. Palm oil shell aggregate for lightweight concrete. Waste Material Used in Concrete Manufacturing. Elsevier: William Andrew Inc. pp. 624-636.

ACI 209.2R-08. 2008. Guide for Modeling and Calculating Shrinkage and Creep in Hardened Concrete. USA: ACI-Committee 209.

Al-Attar, T.S. 2008. Effect of coarse aggregate characteristics on drying shrinkage of concrete. Journal of Engineering and Technology 26(2): 1-8.

Al-Khaiat, H. & Haque, M.N. 1998. Effect of initial curing on early strength and physical properties of a lightweight concrete. Cement and Concrete Research 28(6): 859-866.

Alengaram, U.J., Jumaat, M.Z. & Mahmud, H. 2008. Influence of sand content and silica fume on mechanical properties of palm kernel shell concrete. Paper presented at the Int. Conf. Construction Building Technology. ICCBT: pp. 251-262.

Aslam, M., Shafigh, P. & Jumaat, M.Z. 2016a. Oil-palm by-products as lightweight aggregate in concrete mixture: A review. Journal of Cleaner Production 126: 56-73.

Aslam, M., Shafigh, P., Jumaat, M.Z. & Lachemi, M. 2016b. Benefits of using blended waste coarse lightweight aggregates in structural lightweight aggregate concrete. Journal of Cleaner Production 119: 108-117.

Aslam, M., Shafigh, P. & Jumaat, M.Z. 2016c. Drying shrinkage behaviour of structural lightweight aggregate concrete containing blended oil palm bio-products. Journal of Cleaner Production 127: 183-194.

Aslam, M., Shafigh, P. & Jumaat, M.Z. 2015. Structural lightweight aggregate concrete by incorporating solid wastes as coarse lightweight aggregate. Applied Mechanics and Materials 749: 337-342.

ASTM C 330. 2005. Standard Specification for Lightweight Aggregates for Structural Concrete. Annual book of ASTM standards.

Bogas, J.A., Nogueira, R. & Almeida, N.G. 2014. Influence of mineral additions and different compositional parameters on the shrinkage of structural expanded clay lightweight concrete. Materials & Design 56: 1039-1048.

Carlson, R.W. 1938. Drying shrinkage of concrete as affected by many factors. Paper presented at the Proceedings ASTM 38(2): 419-437.

CEB/FIP manual of design and technology. 1977. Lightweight Aggregate Concrete. First pub. Lancaster: The Construction Press Ltd.

Chuan, L.F. 2015. Innovative cement additives quality improvers in sustainable cement and concrete. Sains Malaysiana 44(11): 1599-1607.

Hilmi, M., Shafigh, P. & Jumaat, M.Z. 2014. Structural lightweight aggregate concrete containing high volume waste materials. Key Engineering Materials 594-595: 498-502.

Holm, T.A. & Bremner, T.W. 2000. State of the Art report on high strength, high durability structural low-density concrete for applications in severe marine environments (Vol. ERDC/ SL TR-00-3): US Army Corps of Engineers, Engineering Research and Development Center.

Kosmatka, S.H., Panarese, W.C. & Panarese, W.C. 2002. Design and Control of Concrete Mixtures. 14th ed. USA: Portland Cement Association.

Lo, T.Y., Cui, H.Z. & Li, Z.G. 2004. Influence of aggregate pre-wetting and fly ash on mechanical properties of lightweight concrete. Waste Management 24(4): 333-338.

Malesev, M., Radonjanin, V., Lukic, I. & Bulatovic, V. 2014. The effect of aggregate, type and quantity of cement on modulus of elasticity of lightweight aggregate concrete. Arabian Journal for Science and Engineering 39(2): 705-711.

Mannan, M.A. & Neglo, K. 2010. Mix design for oil-palm-boiler clinker (OPBC) concrete. Journal of Science and Technology (Ghana) 30(1): 111-118.

Mannan, M.A. & Ganapathy, C. 2002. Engineering properties of concrete with oil palm shell as coarse aggregate. Construction and Building Materials 16(1): 29-34.

Mannan, M.A., Alexander, J., Ganapathy, C. & Teo, D.C.L. 2006. Quality improvement of oil palm shell (OPS) as coarse aggregate in lightweight concrete. Building and Environment 41(9): 1239-1242.

Mehta, P.K. & Monteiro, P.J.M. 2006. Concrete: Microstructure, Properties, and Materials. Vol. 3. New York: McGraw-Hill.

Neville, A.M. & Brooks, J.J. 2008. Concrete Technology. New Delhi: Pearson Education Asia Pte Ltd, PP(CTP).

Neville, A.M. 2008. Properties of Concrete. 14th ed. Malaysia: CTP-VVP,

Neville, A.M. 1971. Hardened Concrete: Physical and Mechanical Aspects. American Concrete Institute: Iowa State University Press.

Okpala, D.C. 1990. Palm kernel shell as a lightweight aggregate in concrete. Building and Environment 25: 291-296.

Pelisser, F., Barcelos, A., Santos, D., Peterson, M. & Bernardin, A.M. 2012. Lightweight concrete production with low Portland cement consumption. Journal of Cleaner Production 23: 68-74.

Polat, R., Demirboğa, R., Karakoç, M.B. & Türkmen, İ. 2010. The influence of lightweight aggregate on the physico-mechanical properties of concrete exposed to freeze-thaw cycles. Cold Regions Science and Technology 60(1): 51-56.

Ranjbar, M.M., Madandoust, R., Mousavi, S.Y. & Yosefi, S. 2013. Effects of natural zeolite on the fresh and hardened properties of self-compacted concrete. Construction and Building Materials (47): 806-813.

Sari, D. & Pasamehmetoglu, A.G. 2005. The effects of gradation and admixture on the pumice lightweight aggregate concrete. Cement and Concrete Research 35(5): 936-942.

Sari, K.A.M., Mat, S., Badri, K.H. & Zain, M.F.M. 2015. A study on the characteristics of palm-based polyurethane as a lightweight aggregate in concrete mix. Sains Malaysiana 44(6): 771-778.

Shafigh, P., Ghafari, H., Mahmud, H.B. & Jumaat, M.Z. 2014a. A comparison study of the mechanical properties and drying shrinkage of oil palm shell and expanded clay lightweight aggregate concretes. Materials & Design 60: 320-327.

Shafigh, P., Mahmud, H.B., Jumaat, M.Z., Ahmmad, R. & Bahri, S. 2014b. Structural lightweight aggregate concrete using two types of waste from the palm oil industry as aggregate. Journal of Cleaner Production 80: 187-196.

Shafigh, P., Mahmud, H.B., Jumaat, M.Z. & Zargar, M. 2014c. Agricultural wastes as aggregate in concrete mixtures-A review. Construction and Building Materials 53: 110-117.

Shafigh, P., Jumaat, M.Z. & Mahmud, H. 2012a. Effect of replacement of normal weight coarse aggregate with oil palm shell on properties of concrete. Arabian Journal for Science and Engineering 37(4): 955-964.

Shafigh, P., Jumaat, M.Z., Mahmud, H.B. & Hamid, N.A.A. 2012b. Lightweight concrete made from crushed oil palm shell: Tensile strength and effect of initial curing on compressive strength. Construction and Building Materials 27(1): 252-258.

Shafigh, P., Jumaat, M.Z. & Mahmud, H. 2011. Oil palm shell as a lightweight aggregate for production high strength lightweight concrete. Construction and Building Materials 25(4): 1848-1853.

Shafigh, P., Jumaat, M.Z. & Mahmud, H. 2010. Mix design and mechanical properties of oil palm shell lightweight aggregate concrete: A review. International Journal of the Physical Sciences 5(14): 2127-2134.

Sobuz, H.R., Hasan, N.M.S., Tamanna, N. & Islam, M.S. 2014. Structural lightweight concrete production by using oil palm shell. Journal of Materials 2014: Article ID. 870247.

Tam, V.W.Y. 2009. Comparing the implementation of concrete recycling in the Australian and Japanese construction industries. Journal of Cleaner Production 17: 688-702.

Teo, D.C.L., Mannan, M.A., Kurian, V.J. & Ganapathy, C. 2007. Lightweight concrete made from oil palm shell (OPS): Structural bond and durability properties. Building and Environment 42(7): 2614-2621.

Yasar, E., Atis, C.D. & Kiliç, A. 2004. High strength lightweight concrete made with ternary mixtures of cement-fly ash-silica fume and scoria as aggregate. Turk. J. Eng. Environ. Sci. 28: 95-100.

 

 

*Corresponding author; email: bhanbhroma@gmail.com

 

 

 

 

previous