Sains Malaysiana
46(4)(2017): 667675
http://dx.doi.org/10.17576/jsm-2017-4604-20
High Strength
Lightweight Aggregate Concrete using Blended Coarse Lightweight
Aggregate Origin from Palm Oil Industry
(Konkrit Agregat Ringan Kekuatan Tinggi menggunakan Gabungan Kasar Ringan Agregat
Asal daripada
Industri Minyak Sawit)
MUHAMMAD
ASLAM1*,
PAYAM
SHAFIGH2,3 &
MOHD ZAMIN JUMAAT1
1Department of Civil Engineering,
Faculty of Engineering, University of Malaya
50603
Kuala Lumpur, Federal Territory, Malaysia
2Department of Building Surveying,
Faculty of Built Environment, University of Malaya
50603
Kuala Lumpur, Federal Territory, Malaysia
3Center for Building,
Construction & Tropical Architecture (BuCTA), Faculty of Built
Environment, University of Malaya, 50603 Kuala Lumpur, Malaysia
Received:
4 September 2015/Accepted: 14 October 2016
ABSTRACT
The
benefits of using structural lightweight concrete in construction
industry, particularly in high rise buildings, over normal weight
concrete are numerous. The main method of producing structural
lightweight concrete is the use of lightweight aggregates instead
of ordinary aggregates in concrete. Due to the limited resources
for natural and artificial lightweight aggregates, the alternative
sources for lightweight aggregates should be discovered from industrial
wastes. Oil palm shell (OPS) and oil-palm-boiler clinker (OPBC)
are two solid wastes from palm oil industry and are available
in abundance in tropical regimes. The use of just OPS as coarse lightweight aggregate
in concrete mixture has some drawbacks for concrete. The aim of
this study was to investigate engineering properties of a lightweight
concrete containing both of these aggregates. For this purpose,
in this study, 50% (by volume) of OPS
was replaced with OPBC in an OPS lightweight concrete. The
test results showed that when OPS was
substituted with OPBC, significant improvement was observed
in the compressive, splitting tensile and flexural strengths.
In addition, initial and final water absorption as well as drying
shrinkage strain of blended coarse lightweight aggregate concrete
were significantly less than OPS concrete.
Keywords:
Clinker; drying shrinkage; lightweight aggregate; mechanical properties;
oil palm shell
ABSTRAK
Terdapat banyak faedah
menggunakan struktur
konkrit ringan dalam industri pembinaan, terutamanya pada bangunan tinggi,
berbanding konkrit
biasa. Kaedah utama menghasilkan struktur konkrit ringan adalah penggunaan
agregat ringan
dan bukannya biasa
agregat dalam
konkrit. Oleh kerana sumber
yang terhad untuk
agregat ringan yang asli dan tiruan,
sumber alternatif
untuk agregat ringan
harus diterokai
daripada sisa industri.
Tempurung
kelapa sawit (OPS)
dan klinker dandang
kelapa-sawit (OPBC) adalah
dua sisa pepejal daripada industri minyak sawit dan didapati
dengan banyaknya
dalam rejim tropika.
Penggunaan
OPS
sahaja sebagai
agregat ringan
kasar dalam campuran
konkrit mempunyai
beberapa kelemahan untuk konkrit. Tujuan kajian ini adalah
untuk mengkaji
sifat kejuruteraan konkrit ringan yang mengandungi kedua-dua agregat ini. Bagi tujuan kajian ini,
50% (isi padu)
daripada OPS telah
digantikan dengan
OPBC
untuk konkrit
ringan OPS. Keputusan ujian
menunjukkan apabila
OPS
digantikan dengan OPBC,
peningkatan ketara
diperhatikan di dalam mampatan, pemecahbelahan tegangan dan kekuatan
lenturan. Di
samping itu, serapan
awal dan akhir air serta strain pengecutan kering konkrit campuran kasar agregat ringan
adalah jauh
berkurangan daripada konkrit OPS.
Kata kunci: Agregat
ringan; klinker;
pengecutan kering; sifat mekanik; tempurung kelapa sawit
REFERENCES
Abdullah,
A.A.A. 1996. Chapter 10. Palm oil shell
aggregate for lightweight concrete. Waste Material Used in
Concrete Manufacturing. Elsevier: William Andrew Inc. pp.
624-636.
ACI 209.2R-08. 2008.
Guide for Modeling and Calculating Shrinkage and Creep in Hardened
Concrete. USA: ACI-Committee 209.
Al-Attar, T.S. 2008. Effect of coarse aggregate characteristics on drying shrinkage of
concrete. Journal of Engineering and Technology 26(2):
1-8.
Al-Khaiat, H.
& Haque, M.N. 1998. Effect of initial curing on early strength and physical properties
of a lightweight concrete. Cement and Concrete Research
28(6): 859-866.
Alengaram,
U.J., Jumaat, M.Z. & Mahmud, H.
2008. Influence
of sand content and silica fume on mechanical properties of palm
kernel shell concrete. Paper presented at the Int. Conf. Construction
Building Technology. ICCBT: pp. 251-262.
Aslam, M., Shafigh,
P. & Jumaat, M.Z. 2016a. Oil-palm
by-products as lightweight aggregate in concrete mixture: A review.
Journal of Cleaner Production 126: 56-73.
Aslam, M., Shafigh,
P., Jumaat, M.Z. & Lachemi,
M. 2016b. Benefits of using blended waste coarse lightweight
aggregates in structural lightweight aggregate concrete. Journal
of Cleaner Production 119: 108-117.
Aslam, M., Shafigh,
P. & Jumaat, M.Z. 2016c. Drying shrinkage behaviour of structural
lightweight aggregate concrete containing blended oil palm bio-products.
Journal of Cleaner Production 127: 183-194.
Aslam, M., Shafigh,
P. & Jumaat, M.Z. 2015. Structural lightweight aggregate concrete by incorporating solid wastes
as coarse lightweight aggregate. Applied Mechanics and
Materials 749: 337-342.
ASTM C 330. 2005.
Standard Specification for Lightweight Aggregates for Structural
Concrete. Annual book of ASTM standards.
Bogas,
J.A., Nogueira, R. & Almeida, N.G.
2014. Influence
of mineral additions and different compositional parameters on
the shrinkage of structural expanded clay lightweight concrete.
Materials & Design 56: 1039-1048.
Carlson,
R.W. 1938. Drying shrinkage of concrete as affected
by many factors. Paper presented at the Proceedings
ASTM 38(2): 419-437.
CEB/FIP manual of design and technology. 1977.
Lightweight Aggregate Concrete. First
pub. Lancaster: The Construction Press Ltd.
Chuan,
L.F. 2015. Innovative cement additives quality improvers in sustainable
cement and concrete. Sains
Malaysiana 44(11): 1599-1607.
Hilmi,
M., Shafigh, P. & Jumaat,
M.Z. 2014. Structural lightweight aggregate
concrete containing high volume waste materials. Key
Engineering Materials 594-595: 498-502.
Holm, T.A. & Bremner,
T.W. 2000. State of the Art report on high strength, high
durability structural low-density concrete for applications in
severe marine environments (Vol. ERDC/ SL TR-00-3): US Army
Corps of Engineers, Engineering Research and Development Center.
Kosmatka,
S.H., Panarese, W.C. & Panarese,
W.C. 2002. Design and Control of Concrete
Mixtures. 14th ed. USA: Portland Cement
Association.
Lo,
T.Y., Cui, H.Z. & Li, Z.G. 2004. Influence of aggregate pre-wetting
and fly ash on mechanical properties of lightweight concrete.
Waste Management 24(4): 333-338.
Malesev,
M., Radonjanin, V., Lukic,
I. & Bulatovic, V. 2014. The effect of aggregate, type and quantity of cement on modulus of
elasticity of lightweight aggregate concrete. Arabian
Journal for Science and Engineering 39(2): 705-711.
Mannan,
M.A. & Neglo, K. 2010. Mix
design for oil-palm-boiler clinker (OPBC) concrete. Journal
of Science and Technology (Ghana) 30(1): 111-118.
Mannan,
M.A. & Ganapathy, C. 2002. Engineering
properties of concrete with oil palm shell as coarse aggregate.
Construction and Building Materials 16(1): 29-34.
Mannan,
M.A., Alexander, J., Ganapathy, C. &
Teo, D.C.L. 2006. Quality improvement of oil palm shell (OPS) as coarse aggregate in
lightweight concrete. Building and Environment 41(9):
1239-1242.
Mehta, P.K. & Monteiro, P.J.M. 2006. Concrete:
Microstructure, Properties, and Materials. Vol.
3. New York: McGraw-Hill.
Neville, A.M. & Brooks, J.J. 2008. Concrete Technology. New Delhi: Pearson Education
Asia Pte Ltd, PP(CTP).
Neville,
A.M. 2008. Properties of Concrete.
14th ed. Malaysia: CTP-VVP,
Neville,
A.M. 1971. Hardened Concrete: Physical and Mechanical Aspects.
American Concrete Institute: Iowa State University Press.
Okpala, D.C. 1990. Palm
kernel shell as a lightweight aggregate in concrete. Building
and Environment 25: 291-296.
Pelisser,
F., Barcelos, A., Santos, D., Peterson,
M. & Bernardin, A.M. 2012. Lightweight concrete production with low Portland cement consumption.
Journal of Cleaner Production 23: 68-74.
Polat,
R., Demirboğa, R., Karakoç,
M.B. & Türkmen, İ. 2010. The
influence of lightweight aggregate on the physico-mechanical
properties of concrete exposed to freeze-thaw cycles. Cold
Regions Science and Technology 60(1): 51-56.
Ranjbar, M.M., Madandoust, R., Mousavi, S.Y. & Yosefi,
S. 2013. Effects of natural zeolite on the fresh
and hardened properties of self-compacted concrete. Construction
and Building Materials (47): 806-813.
Sari, D. & Pasamehmetoglu,
A.G. 2005. The effects of gradation and admixture
on the pumice lightweight aggregate concrete. Cement
and Concrete Research 35(5): 936-942.
Sari, K.A.M., Mat, S., Badri, K.H. & Zain, M.F.M. 2015. A study on the characteristics of palm-based polyurethane as a lightweight
aggregate in concrete mix. Sains
Malaysiana 44(6): 771-778.
Shafigh,
P., Ghafari, H., Mahmud, H.B. &
Jumaat, M.Z. 2014a. A comparison study
of the mechanical properties and drying shrinkage of oil palm
shell and expanded clay lightweight aggregate concretes. Materials
& Design 60: 320-327.
Shafigh,
P., Mahmud, H.B., Jumaat, M.Z., Ahmmad,
R. & Bahri, S. 2014b. Structural lightweight aggregate concrete using two types of waste
from the palm oil industry as aggregate. Journal of
Cleaner Production 80: 187-196.
Shafigh,
P., Mahmud, H.B., Jumaat, M.Z. &
Zargar, M. 2014c. Agricultural wastes
as aggregate in concrete mixtures-A review. Construction and
Building Materials 53: 110-117.
Shafigh,
P., Jumaat, M.Z. & Mahmud, H. 2012a. Effect of replacement of normal weight coarse aggregate with oil palm
shell on properties of concrete. Arabian Journal for
Science and Engineering 37(4): 955-964.
Shafigh,
P., Jumaat, M.Z., Mahmud, H.B. &
Hamid, N.A.A. 2012b.
Lightweight concrete made from crushed oil palm shell: Tensile
strength and effect of initial curing on compressive strength.
Construction and Building Materials 27(1): 252-258.
Shafigh,
P., Jumaat, M.Z. & Mahmud, H. 2011. Oil palm shell as a lightweight aggregate for production high strength
lightweight concrete. Construction and Building Materials
25(4): 1848-1853.
Shafigh,
P., Jumaat, M.Z. & Mahmud, H. 2010. Mix
design and mechanical properties of oil palm shell lightweight
aggregate concrete: A review. International Journal of the
Physical Sciences 5(14): 2127-2134.
Sobuz,
H.R., Hasan, N.M.S., Tamanna, N. &
Islam, M.S. 2014.
Structural lightweight concrete production by
using oil palm shell. Journal of Materials 2014:
Article ID. 870247.
Tam, V.W.Y. 2009. Comparing the implementation of concrete recycling in the Australian
and Japanese construction industries. Journal of Cleaner
Production 17: 688-702.
Teo,
D.C.L., Mannan, M.A., Kurian, V.J. &
Ganapathy, C. 2007. Lightweight concrete
made from oil palm shell (OPS): Structural bond and durability
properties. Building and Environment 42(7): 2614-2621.
Yasar,
E., Atis, C.D. & Kiliç,
A. 2004. High strength lightweight concrete made with ternary
mixtures of cement-fly ash-silica fume and scoria as aggregate.
Turk. J. Eng. Environ. Sci. 28: 95-100.
*Corresponding
author; email: bhanbhroma@gmail.com