Sains Malaysiana 46(5)(2017): 743–753
http://dx.doi.org/10.17576/jsm-2017-4605-09
Mechanical
Properties of Bitumen Quenched Dual Phase Steel
(Sifat
Mekanik Bitumen Lindap Keluli Dual Fasa)
M.O.H. AMUDA1,2*, T.A. OLANIYAN1, L.O. OSOBA1 & E.T. AKINLABI2
1Materials Development
and Processing Research Group (MADEPREG), Department of Metallurgical and
Materials Engineering, University of Lagos, Lagos, 101017, Nigeria
2Department of
Mechanical Engineering Science, University of Johannesburg, Kingsway Campus
Auckland Park, Johannesburg 2006, South Africa
Received: 30 January 2016/Accepted: 17 October 2016
ABSTRACT
The mechanical properties of Dual Phase Steel (DPS)-duplex
structure-produced by quenching in pre-heated bitumen have been investigated.
Medium carbon steels intercritically heated at different temperatures and
holding times were quenched in hot bitumen. Optical and scanning electron
microscopy characterisation of the duplex structure showed extensive network of
fibrous martensite in a ferritic matrix with occasional presence of polygonal
martensite. The duplex phase structure exhibited continuous yielding dynamics,
improving the tensile and hardness values by about 42 and 35%, respectively,
relative to the normalised structure. But, the elongation and impact values
decreased by about 42 and 50%, respectively, when compared to the normalised
structure. These values are similar to those obtained in duplex structure
produced using conventional oil quenching. The tensile fractured surface showed
transition between a predominantly cleavage mode in the lower annealing
temperature to a mixed mode in the upper bound of the annealing temperature.
These findings suggest that pre-heated bitumen can be exploited for the
production of DPSs.
Keywords: Duplex structure; fibrous martensite; intercritical
annealing; tensile fractured surface
ABSTRAK
Sifat mekanik struktur Keluli Fasa Dual (DPS)-dupleks
yang dihasilkan melalui pelindapan dalam bitumen pra-panas
telah dikaji. Keluli karbon sederhana dipanaskan
secara kritikal pada suhu yang dan masa pegangan berbeza telah
dilindap dalam bitumen panas. Pencirian
mikroskop optik dan elektron imbasan oleh struktur dupleks
telah menunjukkan rangkaian luas oleh martensit berserabut
dalam matriks ferit dengan sesekali kehadiran poligon martensit.
Struktur fasa dupleks mempamerkan hasil berterusan yang dinamik,
menambahbaik nilai tegangan dan kekerasan masing-masing sebanyak
42 dan 35%, relatif kepada struktur normalan. Namun,
pemanjangan dan nilai impak menurun masing-masing sebanyak
42 dan 50% jika dibandingkan dengan struktur normalan.
Nilai ini adalah sama seperti yang diperoleh dalam struktur dupleks yang dihasilkan
dengan menggunakan minyak pelindapan konvensional. Permukaan retak tegangan menunjukkan peralihan antara mod belahan
pradominan dalam suhu sepuh lindap rendah kepada mod campuran
dalam batas atas suhu sepuh lindap. Kajian
ini mencadangkan bahawa bitumen prapanas boleh dieksploitasi
untuk pengeluaran DPS.
Kata kunci: Martensit berserabut; permukaan retak
tegangan; sepuh lindap antara kritikal; struktur dupleks
REFERENCES
Adamczyk, J. & Grajcar, A. 2007. Heat treatment and mechanical properties of low-carbon steel with
dual-phase microstructure. Journal of Achievement in Materials and
Manufacturing Engineering 2(2): 13-20.
Adegoke, O.S. 1980. Geotechnical Investigations
of the Ondo State Bituminous Sands, Vol. 1, Geology and Reserves estimates,
Geological Consultancy Unit report. University of Ife, Ile-Ife, Nigeria.
Adeyemi, M.B. & Adedayo, S.M. 2009. Vegetable oils as quenchants for hardening medium carbon steels. Journal of Applied Science and Technology 14(1-2): 74-78.
Alabi, A.A., Madakson,
P.B., Yawas, D.J. & Ause, T. 2013. Effect of bitumen on the mechanical properties
of medium carbon steel. Journal of Minerals and Materials
Characterization and Engineering 1(4): 131-137.
Alaneme, K.K., Ranganathan,
S. & Mojisola, T. 2010. Mechanical behaviour of duplex phase structures in a medium carbon low alloy steel. Journal of Minerals and
Materials Characterization and Engineering 9(7): 621-633.
ASTM E8/E8M. 2013. Standard Test Methods for
Tension Testing of Metallic Materials. Pennsylvania: ASTM
International.
Ause, T. 2008. Evaluation of Hot- Bitumen
Bath as a Quenching Medium for Austempering of Steel and Ductile Cast Iron,
Doctoral Thesis, Ahmadu Bello University Zaria, Nigeria (Unpublished).
Bayram, A., Uguz, A. &
Ula, M. 1999. Effects of mechanical
properties of dual - phase steels. Materials Characterization 9:
259-269.
Bello, K.A. 2007. Effect of intercritical and
tempering heat treatment on the microstructure and mechanical properties of a high Martensite dual phase steel. M.Sc. Dissertation,
Metallurgical Engineering Department, Ahmadu Bello University Zaria, Nigeria
(Unpublished).
Bhattacharyya, A., Sakaki,
T. & Weng, G.J. 1993. Influence of Martensite shape, concentration, and phase
transformation strain on the deformation behaviour of stable dual - phase steels, Metallurgical and Materials Transactions A 24(2):
301-314.
Ekrami, A. &
Bharehbapoor, M. 2005. High temperature behaviour of dual-phase steel. International
Journal of ISSI 2(2): 30-35.
Ersoy, E., Serap, G. &
Oğuz, G. 2013. Microstructural Characterization of Medium Carbon Dual Phase Steels
after Intermediate Quenching. MSc. Thesis submitted to Department of
Metallurgical and Materials Engineering, Kocaeli University,
41380-Kocaeli-Turkey.
Fallahi, A. 2002. Microstructure-properties correlation of dual
phase steels produced by controlled rolling process. Journal of Materials
Science Technology 18(5): 451-454.
Fazaeli, A., Ekrami, A.
& Kokabi, A.H. 2016. Microstructure and mechanical properties of dual phase steels, with different
Martensite morphology, produced during TLP bonding of a low C-Mn steel. Metals and Materials International 22(5): 856-862.
Ghassemi-Armaki, H., Maab, R., Bhat, S.P.,
Sriram, S., Greer, J.R. & Kumar, K.S. 2014. Deformation
response of ferrite and Martensite in a dual-phase steel. Acta
Materialia 62: 197-211.
Ghosh, P.K., Gupta, P.C., Ramavtar & Jha,
B.K. 1991. Weldability of intercritical annealed dual phase steel with
resistance spot welding process. Welding Journal 70(1): 7s-14s.
Giodarno, L., Matteazzi,
P., Tiziani, A. & Zambon, A. 1991. Retained austenite variation in dual phase steel after mechanical
stressing and heat treatment. Materials Science and
Engineering A 131(2): 215-219.
Gorni, A.A. 2006. Steel Forming and Heat
Treating Handbook. Sao Vacente, Brazil. Vol. 2. p. 4.
Granbom, Y. 2010. Structure
and mechanical properties of dual phase steels - An experimental and
theoretical analysis. Doctoral Thesis, Royal Institute of Technology.
Sweden.
Hall, J.N. 2011. Evolution of advanced high
strength steels in automotive applications. Power Point Presentation in
Great Design in Steel Seminar. http://www.autosteel.org. Accessed on 22
August 2014. pp. 1-27.
Herring, D.H. 2010. Oil Quenching. Accessed from http://www.
heat-treat-doctor.com. 30 August 2014. pp. 1-24.
Khamedi, R., Fallahi, A.
& Zoghi, H. 2009. The
influence of morphology and volume fraction of Martensite on AE signals during
tensile-loading of dual phase steels. International Journal of Recent Trends
in Engineering 1(5): 30-34.
Krajewski, S. & Nowacki, J. 2014. Dual-phase
steels microstructure and properties consideration based on artificial
intelligence techniques. Archives of Civil and Mechanical Engineering 14(2):
278-286.
Kumar, A., Singh, S.B.
& Ray, K.K. 2008. Influence of bainite/ Martensite content on the tensile properties of low
carbon dual phase steels. Materials Science and
Engineering A 474: 270-282.
Kuziak, R., Kawalla, R. & Waengler, S. 2008.
Advanced high strength steel for automotive industry. Archives of Civil and
Mechanical Engineering III(2): 103-117.
Leslie, W.C. 1981. The
Physical Metallurgy of Steel. McGraw- Hill Series
in Materials Science and Engineering. Washington: Hempisphere Publishing
Corp. p. 257.
Massalski, T.B., Okamoto, H., Subramanian, P.R.,
Kacprzak, L. & Scott, W.W. 1990. Binary Alloy Phase Diagrams (Vol.
1, No. 2). Metals Park, OH: American Society for Metals.
Mazinani, M. & Poole,
W. 2007. Deformation
behaviour of Martensite in a low-carbon dual - phase steel. Advanced
Materials Research 15-17: 774-779.
Odusote, J.K., Ajiboye, T.K. & Rabiu, A.B.
2012. Evaluation of mechanical properties of medium carbon
steel quenched in water and oil. Assumption University, Journal of
Technology 15(4): 218-224.
Rashid, M.S. 1981. Dual phase steels. Annual
Review of Materials Science 11: 245-266.
Son, Y., Lee, Y., Park,
K.T., Lee, S. & Shin, D.H. 2005. Ultra-fine grained ferrite-Martensite dual phase steels
fabricated via equal channel angular pressing: Microstructure and tensile
properties. Acta Materialia 53(11): 3125-3134.
Speight, J.G. 1992. Asphalt in - Kirk Othmer
Encyclopedia of Chemical Technology. 4th ed. New
York: John Wiley and Sons. 3: 689-724.
Sun, S. & Pugh, M.
2002. Properties of
thermomechanically processed dual - phase steels containing fibrous Martensite. Materials Science and Engineering A 335(1-2): 298- 308.
Tasan, C.C., Diehl, M.,
Yan, D., Bechtold, M., Roters, F., Schemmann, L., Zheng, C., Peranio, N.,
Ponge, D., Koyama, M., Tsuzak, K. & Raabe, D. 2015. An overview of dual-phase steels: Advances in
microstructure-oriented processing and micromechanically guided design. Annual
Review of Materials Research 45: 391-431.
Tayanc, M., Aytac, A. & Bayram, A. 2007. The effect of carbon on the fatigue strength of dual phase
steels. Materials and Design 28(6): 1827-1835.
ThyssenKrupp Steel Europe. 2008. DP-W® and DP-K® dual phase steels for the manufacture of complex
high-strength structural elements. http:// www.thyssenkrupp-steel-europe.
com/upload/.../Dual_phase_steels.pdf. Accessed on 26 August 2014.
Tsipouridis,
P. 2006. Mechanical properties of dual phase steels. Doctoral Thesis, Technical University Munchen, Germany (Unpublished).
WorldAutoSteel.
2011. Future steel vehicle: Overview report. http://www.autosteel.org. Accessed
on 22 August 2014. pp. 1-78.
Xiurong,
Z., Yunbo, C. & Miaohui, W. 2012. Study on microstructures and work
hardening behavior of ferrite- Martensite dual-phase steels with high-content
Martensite, materials research of school of physics and engineering, Zhengzhou
University, Zhengzhou, 450052, PR, China. Vol. 15: pp. 915-921.
Xu,
U., Yang, W. & Sun, Z. 2008. Mechanical properties of fine-grained dual
phase low -carbon steels based on dynamic transformation. Journal of
University of Science and Technology Beijing, Mineral, Metallurgy, Materials 15(5):
556-560.
*Corresponding
author; email: mamuda@unilag.edu.ng