Sains Malaysiana 46(5)(2017): 755–762
http://dx.doi.org/10.17576/jsm-2017-4605-10
Laser Cutting of Square Blanks in Stainless
Steel-304 Sheets: HAZ and Thermal Stress Analysis
(Pemotongan Laser Segi Empat Kosong dalam Lembaran
Keluli Kalis Karat-304: HAZ dan Analisis
Tegasan Termal)
A.M. SIFULLAH1, KHALED I. AHMED2, Y. NUKMAN1*, M.A. HASSAN1 & A. HOSSAIN1
1Department of Mechanical
Engineering, Faculty of Engineering, University of Malaya
50603 Kuala Lumpur,
Federal Territory, Malaysia
2Mechanical Engineering
Department, Assiut University, Assiut 71615, Egypt
Received: 9 March
2016/Accepted: 17 October 2016
ABSTRACT
Laser cutting is a non-traditional
cutting process and cutting of square blank in stainless steel-304
sheets cause heat affected zone (HAZ) and thermal stress. Formation of
HAZ
is undesirable and excessive stress cause surface
defects. Thus, it is necessary to analyze them intensively.
The process of laser cutting is a complex thermo-mechanical
process. Hence, in this study a thermo-mechanical finite element
model has been introduced by ANSYS to predict the temporal
variation together with thermal stress and width of heat affected
zone (HAZ).
CO2 laser is used to cut 10 ×
10 mm square blank in a 3 mm thick stainless steel-304 sheet.
Optical microscope and SEM are used to analyse the parametric
effect on surface quality at the cutting edge. The results
showed that maximum temperature at the cutting edge is about
to melting temperature and independent to laser power and
cutting speed. Importantly, cutting speed has significant
effect on rate of temperature variation. Moreover, the width
of HAZ increases
with the increase of laser power and decrease of cutting speed.
However results of ANOVA suggested that laser power is the most significant
parameter having 64.21% of contribution to width of HAZ.
Furthermore, maximum stress is observed at the corner; which
is supported by SEM
analysis.
Keywords: Finite element analysis;
heat affected zone; laser blanking; stainless steel-304; thermal stress
ABSTRAK
Pemotongan laser
adalah satu
proses pemotongan bukan tradisi dan memotong
kepingan keluli
kalis karat-304 segi empat kosong boleh
menyebabkan terjadinya
zon terjejas haba (HAZ)
dan tekanan
termal. Pembentukan HAZ
tidak diingini dan tekanan berlebihan
akan menyebabkan
kecacatan permukaan.
Oleh itu, adalah perlu
untuk menganalisis
perkara ini secara
intensif. Tetapi
proses pemotongan laser adalah
proses termo-mekanik kompleks.
Oleh
itu, dalam kajian
ini, model unsur
terhingga termo-mekanik telah diperkenalkan menggunakan
ANSYS untuk
meramalkan perubahan variasi sementara bersama dengan tekanan termal dan lebar zon terjejas haba
(HAZ). CO2 laser
digunakan untuk
memotong 10 × 10 mm kepingan keluli kalis karat-304 segi empat kosong
dengan kelebaran
3 mm. Mikroskop optik dan SEM digunakan
untuk menganalisis
kesan parametrik pada kualiti permukaan
di pinggir pemotongan.
Keputusan
menunjukkan bahawa suhu maksimum di pinggir pemotongan adalah berkadaran dengan suhu takat
lebur dan
berkadaran dengan kuasa laser dan kelajuan pemotongan. Oleh itu, kelajuan
pemotongan mempunyai
kesan yang besar ke atas kadar perubahan suhu. Tambahan pula, lebar HAZ meningkat dengan peningkatan kuasa laser dan penurunan kelajuan
pemotongan. Walau bagaimanapun,
keputusan ANOVA mencadangkan
bahawa kuasa
laser adalah parameter yang paling penting
mempunyai 64.21% daripada
sumbangan untuk lebar HAZ. Tambahan pula, tekanan
maksimum diperhatikan
berlaku di bahagian sudut juga disokong
oleh analisis SEM.
Kata kunci: Analisis
model terhingga; kalis
karat-304; pemblankan laser; tegasan termal; zon
terjejas haba
REFERENCES
Anderson,
M.C. & Shin, Y.C. 2006. Laser-assisted machining of an austenitic stainless
steel: P550. Proceedings of the Institution of Mechanical Engineers, Part B:
Journal of Engineering Manufacture 220(12): 2055-2067.
Boyden,
S. & Zhang, Y. 2006. Temperature and wavelength-dependent
spectral absorptivities of metallic materials in the infrared. Journal of Thermophysics and Heat Transfer 20(1): 9-15.
Dinov, I. 2014. Statistics Online
Computational Resource (SOCR). Available
from http://www.socr.ucla.edu/applets. dir/f_table.html.
Guenael,
G., Morel, F., Lebrun, J-L. & Morel, A. 2007. Machinability and
surface integrity for a bearing steel and a titanium alloy in laser assisted
machining (optimisation on LAM on two materials). Lasers in Engineering 17(5):
329-344.
Inc. 2007. ANSYS. ANSYS Theory Manual, Release 11.
Jamshidi
Aval, H., Farzadi, A., Serajzadeh, S. & Kokabi, A.H. 2009. Theoretical and
experimental study of microstructures and weld pool geometry during GTAW of 304 stainless steel. The International Journal of
Advanced Manufacturing Technology 42(11-12): 1043-1051. doi:
10.1007/s00170- 008-1663-6.
Khan,
O.U. & Yilbas, B.S. 2004. Laser heating of sheet metal and thermal stress
development. Journal of Materials Processing Technology 155: 2045-2050.
Lee, H.T. & Chen,
C.T. 2011. Numerical and experimental investigation into effect
of temperature field on sensitization of AISI 304 in butt welds fabricated by
gas tungsten arc welding. Materials Transactions 52(7):
1506-1514.
Masumoto,
I., Shinoda, T. & Hirate, T. 1990. Weld decay recovery by laser beam
surfacing of austenitic stainless steel welded joints. Transactions
of the Japan Welding Society 21(1): 11-17.
Mazumder, J. &
Steen, W.M. 1980. Heat transfer model for CW laser material processing. Journal
of Applied Physics 51(2): 941-947.
Nyon,
K.Y., Nyeoh, C.Y., Mohzani Mokhtar & Razi Abdul- Rahman. 2012. Finite element
analysis of laser inert gas cutting on Inconel 718. The International
Journal of Advanced Manufacturing Technology 60(9-12): 995-1007.
Parandoush
Pedram & Altab Hossain. 2014. A review of modeling and simulation of
laser beam machining. International Journal of Machine Tools and Manufacture 85: 135-145.
Sheng, P.S. & Joshi,
V.S. 1995. Analysis of heat-affected zone formation for laser cutting of stainless-steel. Journal of Materials Processing
Technology 53(3-4): 879-892. doi:
10.1016/0924-0136(94)01761-O.
Shiue,
R.K., Chang, C.T., Young, M.C. & Tsay, L.W. 2004. The effect of residual
thermal stresses on the fatigue crack growth of laser-surface-annealed AISI 304
stainless steel: Part I: computer simulation. Materials Science and
Engineering: A 364(1): 101-108.
Steen,
W.M., Mazumder, J. & Watkins, K.G. 2003. Laser Material
Processing. New York: Springer.
Tan,
C.W., Chan, Y.C., Leung, B.N.W., Tsun, J., & So, A.C.K. 2005. Characterization of
Kovar-to-Kovar laser welded joints and its mechanical strength. Optics and
Lasers in Engineering 43(2): 151-162.
Yang,
J., Sun, S., Brandt, M. & Yan, W. 2010. Experimental
investigation and 3D finite element prediction of the heat affected zone during
laser assisted machining of Ti6Al4V alloy. Journal of Materials Processing
Technology 210(15): 2215-2222. doi:
http://dx.doi.org/10.1016/j. jmatprotec.2010.08.007.
Yilbas, B.S. &
Akhtar, S.S. 2011. Laser cutting of alloy steel: Three-dimensional modeling of
temperature and stress fields. Materials and Manufacturing Processes 26(1):
104-112. doi: 10.1080/10426914.2010.501092.
Yilbas, B.S., Akhtar, S.
& Keles, O. 2014. Laser cutting of triangular blanks from thick aluminum
foam plate: Thermal stress analysis and morphology. Applied Thermal Engineering 62(1):
28-36. doi: http://dx.doi.org/10.1016/j.
applthermaleng.2013.09.026.
Yilbas, B.S., Arif,
A.F.M. & Abdul Aleem, B.J. 2010. Laser cutting of rectangular blanks in
thick sheet steel: Effect of cutting speed on thermal stresses. Journal of Materials Engineering and Performance 19(2):
177-184.
Yilbas, B.S., Arif,
A.F.M. & Abdul Aleem, B.J. 2009. Laser cutting of holes in thick sheet
metals: Development of stress field. Optics and Lasers in Engineering 47(9):
909-916. doi: http://dx.doi.org/10.1016/j.optlaseng.2009.03.002.
Yilbas, B.S., Davies, R.
& Yilbas, Z. 1990. Study into the measurement and prediction of penetration
time during CO2 laser cutting process. Proceedings of the
Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 204(2): 105-113.
Yusoff Nukman, Saifu R.
Ismail, Azuddin Mamat & Aznijar Ahmad-Yazid. 2008. Selected Malaysian wood CO2 -laser
cutting parameters and cut quality. American Journal of Applied Sciences 5(8):
990-996.
*Corresponding author; email: nukman@um.edu.my