Sains Malaysiana 46(5)(2017): 763–771
http://dx.doi.org/10.17576/jsm-2017-4605-11
Soil
Organic Matter Mineralization under Different Temperatures
and Moisture Conditions in Kőzőldağ
Plateau, Turkey
(Pemineralan
Jirim Tanah Organik di Bawah Suhu dan Lembapan Berbeza di
dataran Penara Kőzőldağ, Turki)
SAHIN CENKSEVEN,
NACIDE
KIZILDAG*,
BURAK
KOCAK,
HUSNIYE
AKA
SAGLIKER
& CENGIZ DARICI
1Department
of Soil Science and Plant Nutrition, Cukurova University, Turkey
2Central
Research Laboratory, Cukurova University, Turkey
3Department
of Biology, Cukurova University, Turkey
4Department of Biology,
University of Osmaniye Korkut Ata, Turkey
Received: 7 July 2016/Accepted: 10 October 2016
ABSTRACT
Drought by climate change in East Mediterranean Region will change
soil temperature and moisture that lead to alter the cycling
of biological elements like carbon and nitrogen. However,
there are few studies that show how sensitivity of soil organic
matter mineralization to temperature and/or moisture can be
modified by changes in these parameters. In order to study
how these changes in temperature and moisture affect soil
carbon and nitrogen mineralization, a laboratory experiment
was carried out in two depths (0-5 and 5-15 cm) of soils of
Onobrychis beata and Trifolium
speciosum being common annual plants in Turkey that was
taken from Kőzőldağ Plataeu (Adana city).
Some soil physical and chemical properties and as well as
rate of carbon and nitrogen mineralizations were determined
for both depths of soils. These soils were incubated for 42
days under different field capacities (FC 60, 80 and 100%)
and temperatures (24, 28 and 32°C). Cumulative carbon
mineralization (Cm), potential mineralizable carbon (C0)
and rate of carbon mineralization of all soils were increased
with rising temperatures. Rate of carbon mineralization in
O. beata soil were lower than T. speciosum soil.
NH4-N and NO3-N
contents at 42nd day were higher than initial levels of soils
and also increased with temperatures and field capacities.
In summary, sensitivity of soil organic matter mineralization
to temperature was higher at 32°C in upper layer and lower
at 24°C in deeper layer of both soils.
Keywords: Climate change; East Mediterranean Region; incubation
experiment; soil C and N mineralization
ABSTRAK
Kemarau yang disebabkan oleh perubahan iklim di Rantau Mediterranean
Timur akan mengubah suhu tanah dan lembapan yang membawa kepada
perubahan kitaran unsur biologi seperti karbon dan nitrogen.
Walau bagaimanapun, terdapat beberapa kajian yang menunjukkan
bagaimana sensitiviti pemineralan jirim tanah organik ke atas
suhu dan/atau lembapan boleh diubah suai melalui perubahan
kepada parameter ini. Dalam usaha untuk mengkaji bagaimana
perubahan dalam suhu dan lembapan mempengaruhi karbon tanah
dan pemineralan nitrogen, uji kaji makmal telah dijalankan
pada dua kedalaman (0-5 dan 5-15 cm) daripada tanih Onobrychis beata dan Trifolium speciosum yang merupakan
tumbuhan biasa di Turki yang telah diambil dari penara Kőzőldağ (bandar Adana). Beberapa sifat fizikal dan kimia tanah serta
kadar pemineralan karbon dan nitrogen telah ditentukan bagi
kedua-dua kedalaman tanah. Tanah ini telah dieram selama 42
hari di bawah kapasiti bidang yang berlainan (FC 60, 80 dan
100%) dan suhu (24, 28 dan 32°C). Pemineralan karbon kumulatif
(Cm),
potensi karbon boleh dimineral (C0) dan peningkatan kadar pemineralan
karbon untuk semua tanah dengan peningkatan suhu. Kadar pemineralan
karbon dalam tanah O. beata adalah lebih rendah daripada
tanah T. speciosum. Kandungan NH4-N dan NO3-N
pada hari ke-42 adalah lebih tinggi daripada tanah peringkat
awal dan meningkat dengan suhu dan kapasiti lapangan. Kesimpulannya,
sensitiviti pemineralan jirim tanah organik kepada suhu adalah
lebih tinggi pada 32°C dalam lapisan atas dan 24°C
pada lapisan bawah untuk kedua-dua tanah.
Kata kunci: Pemineralan
tanah C dan N; perubahan iklim; Rantau Mediterranean Timur; uji kaji incubator
REFERENCES
Ajwa, H.A. & Tabatabai, M.A. 1994. Decomposition of
different organic materials in soils. Biology and Fertility of Soils 18:
175-182.
Birch, H.F. 1958. The effect of soil drying on humus
decomposition and nitrogen availability. Plant and Soil 10: 9-31.
Benlot, C. 1977. Recherches sur les activites biochimiques
dans les successions de sols derives de cendres volcaniques sous climat
tropical humide (Zaire- Indonesie). ENS Lab. de Zoologie, Paris.
Bloem, J., de Ruiter, P.C., Koopman, G.J., Lebbink, G. &
Brussaard, L. 1992. Microbial numbers and activity in dried and rewetted arable
soil under integrated and conventional management. Soil Biology and
Biochemistry 24: 655-665.
Bouyoucos, G.S. 1951. A recalibration of the hydrometer for
making mechanical analysis of soil. Agronomy Journal 43: 434-438.
Cook, B.I., Anchukaitis, K.J., Touchan, R., Meko, D.M. &
Cook, E.R. 2016. Spatiotemporal drought variability in the Mediterranean over
the last 900 years. Journal of Geophysical Research-Atmospheres 121(5):
2060-2074.
Cox, P.M., Betts, R.A., Jones, C.D., Spall, S.A. &
Totterdell, I.J. 2000. Acceleration of global warming due to carbon-cycle
feedbacks in a coupled climate model. Nature 408: 184-187.
Curtin, D. & Campbell, C.A. 2008. Mineralizable
nitrogen. In Soil Sampling and Methods of Analysis, edited by Carter,
M.R. & Gregorich, E.G. Boca Raton: CRC Press. pp. 599-606.
Demiralay, I. 1993. Toprak fiziksel analizleri.
Atatürk Üniversitesi Ziraat Fakültesi Yay?nlar?, Erzurum, Türkiye
(Unpublished).
Duchaufour, P. 1970. Precis de Pedologie. Masson et
C1e, Editeurs, Paris. pp. 435-437.
Gökceoglu, M. 1979. Baz? bitki organlar?ndaki azot, fosfor
ve potasyumun bir vejetasyon periyodundaki değişimi. Doğa
Tar?m ve Ormanc?l?k 3: 192-199.
Guleryuz, G. & Everest, A. 2010. Nitrogen mineralization
in the soils of the conifer forest communities in the Eastern Mediterranean. Ekoloji 19(74): 51-59.
Guntinas, M.E., Gil-Sotres, F., Leiros, M.C. &
Trasar-Cepeda, C. 2013. Sensitivity of soil respiration to moisture and
temperature. Journal of Soil Science and Plant Nutrition 13(2): 445-461.
Guntinas, M.E., Leiros, M.C., Trasar-Cepeda, C. &
Gil-Sotres, F. 2012. Effects of moisture and temperature on net soil nitrogen
mineralization: A laboratory study. European Journal of Soil Biology 48:
73-80.
Hopkins, D.W. 2008. Carbon mineralization, In Soil
Sampling and Methods of Analysis. 2nd ed., edited by Gregorich, E.G. &
Beare, M.H. Boca Raton: CRC Press.
Howard, D.M. & Howard, P.J.A. 1993. Relationships
between CO2 evolution, moisture-content and temperature for
a range of soil types. Soil Biology and Biochemistry 25(11): 1537-1546.
Jackson, M.L. 1958. Soil Chemical Analysis. Englewood
Cliffs, New Jersey: PrenticeHall, Inc.
Jager, G. & Bruins, E.H. 1975. Effect of repeated drying
at different temperatures on soil organic matter decomposition and
characteristics, and on soil microflora. Soil Biology and Biochemistry 7:
153-159.
Keskin, A. 2014. K?z?ldağ Yayla (Adana) ve Çevresinin
Floras?. MSc. Thesis, Niğde University, Turkey (Unpublished). p. 170.
Kirschbaum, M.U.F. 2000. Will changes in soil organic carbon
act as a positive or negative feedback on global warming? Biogeochemistry 48(1):
21-51.
Kleinbaum, D.G., Kupper, L.L., Muller, K.E. & Nizam, A.
1998. Applied Regression Analysis and Other Multivariable Methods.
California: Duxbury Press.
Komala, T. & Khun, T.C. 2014. Biological carbon dioxide
sequestration potential of Bacillus pumilus. Sains Malaysiana 43(8):
1149-1156.
Lemée, G. 1967. Investigation sur la mineralisation de
l’azote et son evolution annuelle dans des humus forestiers in situ. Oecologia 2: 285-324.
Li, Y., Liu, Y.H., Wang, Y.L., Niu, L., Xu, X. & Tian,
Y.Q. 2014. Interactive effects of soil temperature and moisture on soil N
mineralization in a Stipa krylovii grassland in Inner Mongolia, China. Journal
of Arid Land 6(5): 571-580.
Mande, K.H., Abdullah, A.M., Zaharin, A.A. & Ainuddin,
A.N. 2014. Drivers of soil carbon dioxide efflux in a 70 years mixed trees
species of tropical lowland forest, Peninsular Malaysia. Sains Malaysiana 43(12):
1843-1853.
Neffar, S., Beddiar, A. & Chenchouni, H. 2015. Effects
of soil chemical properties and seasonality on mycorrhizal status of prickly
pear (Opuntia ficus-indica) planted in hot arid steppe rangelands. Sains
Malaysiana 44(5): 671-680.
Olson, J.S. 1963. Energy storage and the balance of
producers and decomposers in ecological systems. Ecology 44: 322-331.
Origin. v.8.0. OriginLab Corporation. One Roundhouse Plaza,
Northampton, MA, 01060 USA.
Qi, G., Wang, Q., Zhou, W., Ding, H., Wang, X., Qi, L.,
Wang, Y., Li, S. & Dai, L. 2011. Moisture effect on carbon and nitrogen
mineralization in topsoil of Changbai Mountain, Northeast China. Journal of
Forest Science 57: 340-348.
Rey, A., Petsikos, C., Jarvis, P.G. & Grace, J. 2005.
Effect of temperature and moisture on rates of carbon mineralization in a
Mediterranean oak forest soil under controlled and field conditions. European
Journal of Soil Science 56(5): 589-599.
Schaefer, R. 1967. Characteres et evolution des activites
microbiennes dans une chaine de sols hydromorphes mesotrophiques de la plaine
d’Alsace. Revue d’Ecologie et de Biologie du Sol 4: 567-592.
Sorensen, L.H. 1974. Rate of decomposition of organic matter
in soil as influenced by repeated air drying-rewetting and repeated additions
of organic material. Soil Biology and Biochemistry 6: 287292.
Weil, R.R., Islam, K.R., Stine, M.A., Gruver, J.B. &
Samson- Liebig, S.E. 2003. Estimating active carbon for soil quality
assessment: A simplified method for laboratory and field use. American Journal
of Alternative Agriculture 18(1): 3-17.
Yuste, J.C., Baldocchi, D.D., Gershenson, A., Goldstein, A.,
Misson, L. & Wong, S. 2007. Microbial soil respiration and its dependency
on carbon inputs, soil temperature and moisture. Global Change Biology 13(9):
2018-2035.
Zengin,
E., Sagliker, H.A. & Darici, C. 2008. Carbon mineralization of Acacia
cyanophylla soils under the different temperature and humidity conditions. Ekoloji 18(69): 1-6.
*Corresponding
author; email: nkizildag@cu.edu.tr