Sains Malaysiana 46(5)(2017): 763–771

http://dx.doi.org/10.17576/jsm-2017-4605-11

 

Soil Organic Matter Mineralization under Different Temperatures and Moisture Conditions in Kőzőldağ Plateau, Turkey

(Pemineralan Jirim Tanah Organik di Bawah Suhu dan Lembapan Berbeza di dataran Penara Kőzőldağ, Turki)

 

SAHIN CENKSEVEN, NACIDE KIZILDAG*, BURAK KOCAK, HUSNIYE AKA SAGLIKER

& CENGIZ DARICI

 

1Department of Soil Science and Plant Nutrition, Cukurova University, Turkey

 

2Central Research Laboratory, Cukurova University, Turkey

 

3Department of Biology, Cukurova University, Turkey

 

4Department of Biology, University of Osmaniye Korkut Ata, Turkey

 

Received: 7 July 2016/Accepted: 10 October 2016

 

ABSTRACT

Drought by climate change in East Mediterranean Region will change soil temperature and moisture that lead to alter the cycling of biological elements like carbon and nitrogen. However, there are few studies that show how sensitivity of soil organic matter mineralization to temperature and/or moisture can be modified by changes in these parameters. In order to study how these changes in temperature and moisture affect soil carbon and nitrogen mineralization, a laboratory experiment was carried out in two depths (0-5 and 5-15 cm) of soils of Onobrychis beata and Trifolium speciosum being common annual plants in Turkey that was taken from Kőzőldağ Plataeu (Adana city). Some soil physical and chemical properties and as well as rate of carbon and nitrogen mineralizations were determined for both depths of soils. These soils were incubated for 42 days under different field capacities (FC 60, 80 and 100%) and temperatures (24, 28 and 32°C). Cumulative carbon mineralization (Cm), potential mineralizable carbon (C0) and rate of carbon mineralization of all soils were increased with rising temperatures. Rate of carbon mineralization in O. beata soil were lower than T. speciosum soil. NH4-N and NO3-N contents at 42nd day were higher than initial levels of soils and also increased with temperatures and field capacities. In summary, sensitivity of soil organic matter mineralization to temperature was higher at 32°C in upper layer and lower at 24°C in deeper layer of both soils.

 

Keywords: Climate change; East Mediterranean Region; incubation experiment; soil C and N mineralization

 

ABSTRAK

Kemarau yang disebabkan oleh perubahan iklim di Rantau Mediterranean Timur akan mengubah suhu tanah dan lembapan yang membawa kepada perubahan kitaran unsur biologi seperti karbon dan nitrogen. Walau bagaimanapun, terdapat beberapa kajian yang menunjukkan bagaimana sensitiviti pemineralan jirim tanah organik ke atas suhu dan/atau lembapan boleh diubah suai melalui perubahan kepada parameter ini. Dalam usaha untuk mengkaji bagaimana perubahan dalam suhu dan lembapan mempengaruhi karbon tanah dan pemineralan nitrogen, uji kaji makmal telah dijalankan pada dua kedalaman (0-5 dan 5-15 cm) daripada tanih Onobrychis beata dan Trifolium speciosum yang merupakan tumbuhan biasa di Turki yang telah diambil dari penara Kőzőldağ (bandar Adana). Beberapa sifat fizikal dan kimia tanah serta kadar pemineralan karbon dan nitrogen telah ditentukan bagi kedua-dua kedalaman tanah. Tanah ini telah dieram selama 42 hari di bawah kapasiti bidang yang berlainan (FC 60, 80 dan 100%) dan suhu (24, 28 dan 32°C). Pemineralan karbon kumulatif (Cm), potensi karbon boleh dimineral (C0) dan peningkatan kadar pemineralan karbon untuk semua tanah dengan peningkatan suhu. Kadar pemineralan karbon dalam tanah O. beata adalah lebih rendah daripada tanah T. speciosum. Kandungan NH4-N dan NO3-N pada hari ke-42 adalah lebih tinggi daripada tanah peringkat awal dan meningkat dengan suhu dan kapasiti lapangan. Kesimpulannya, sensitiviti pemineralan jirim tanah organik kepada suhu adalah lebih tinggi pada 32°C dalam lapisan atas dan 24°C pada lapisan bawah untuk kedua-dua tanah.

 

Kata kunci: Pemineralan tanah C dan N; perubahan iklim; Rantau Mediterranean Timur; uji kaji incubator

REFERENCES

 

Ajwa, H.A. & Tabatabai, M.A. 1994. Decomposition of different organic materials in soils. Biology and Fertility of Soils 18: 175-182.

Birch, H.F. 1958. The effect of soil drying on humus decomposition and nitrogen availability. Plant and Soil 10: 9-31.

Benlot, C. 1977. Recherches sur les activites biochimiques dans les successions de sols derives de cendres volcaniques sous climat tropical humide (Zaire- Indonesie). ENS Lab. de Zoologie, Paris.

Bloem, J., de Ruiter, P.C., Koopman, G.J., Lebbink, G. & Brussaard, L. 1992. Microbial numbers and activity in dried and rewetted arable soil under integrated and conventional management. Soil Biology and Biochemistry 24: 655-665.

Bouyoucos, G.S. 1951. A recalibration of the hydrometer for making mechanical analysis of soil. Agronomy Journal 43: 434-438.

Cook, B.I., Anchukaitis, K.J., Touchan, R., Meko, D.M. & Cook, E.R. 2016. Spatiotemporal drought variability in the Mediterranean over the last 900 years. Journal of Geophysical Research-Atmospheres 121(5): 2060-2074.

Cox, P.M., Betts, R.A., Jones, C.D., Spall, S.A. & Totterdell, I.J. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408: 184-187.

Curtin, D. & Campbell, C.A. 2008. Mineralizable nitrogen. In Soil Sampling and Methods of Analysis, edited by Carter, M.R. & Gregorich, E.G. Boca Raton: CRC Press. pp. 599-606.

Demiralay, I. 1993. Toprak fiziksel analizleri. Atatürk Üniversitesi Ziraat Fakültesi Yay?nlar?, Erzurum, Türkiye (Unpublished).

Duchaufour, P. 1970. Precis de Pedologie. Masson et C1e, Editeurs, Paris. pp. 435-437.

Gökceoglu, M. 1979. Baz? bitki organlar?ndaki azot, fosfor ve potasyumun bir vejetasyon periyodundaki değişimi. Doğa Tar?m ve Ormanc?l?k 3: 192-199.

Guleryuz, G. & Everest, A. 2010. Nitrogen mineralization in the soils of the conifer forest communities in the Eastern Mediterranean. Ekoloji 19(74): 51-59.

Guntinas, M.E., Gil-Sotres, F., Leiros, M.C. & Trasar-Cepeda, C. 2013. Sensitivity of soil respiration to moisture and temperature. Journal of Soil Science and Plant Nutrition 13(2): 445-461.

Guntinas, M.E., Leiros, M.C., Trasar-Cepeda, C. & Gil-Sotres, F. 2012. Effects of moisture and temperature on net soil nitrogen mineralization: A laboratory study. European Journal of Soil Biology 48: 73-80.

Hopkins, D.W. 2008. Carbon mineralization, In Soil Sampling and Methods of Analysis. 2nd ed., edited by Gregorich, E.G. & Beare, M.H. Boca Raton: CRC Press.

Howard, D.M. & Howard, P.J.A. 1993. Relationships between CO2 evolution, moisture-content and temperature for a range of soil types. Soil Biology and Biochemistry 25(11): 1537-1546.

Jackson, M.L. 1958. Soil Chemical Analysis. Englewood Cliffs, New Jersey: PrenticeHall, Inc.

Jager, G. & Bruins, E.H. 1975. Effect of repeated drying at different temperatures on soil organic matter decomposition and characteristics, and on soil microflora. Soil Biology and Biochemistry 7: 153-159.

Keskin, A. 2014. K?z?ldağ Yayla (Adana) ve Çevresinin Floras?. MSc. Thesis, Niğde University, Turkey (Unpublished). p. 170.

Kirschbaum, M.U.F. 2000. Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeochemistry 48(1): 21-51.

Kleinbaum, D.G., Kupper, L.L., Muller, K.E. & Nizam, A. 1998. Applied Regression Analysis and Other Multivariable Methods. California: Duxbury Press.

Komala, T. & Khun, T.C. 2014. Biological carbon dioxide sequestration potential of Bacillus pumilus. Sains Malaysiana 43(8): 1149-1156.

Lemée, G. 1967. Investigation sur la mineralisation de l’azote et son evolution annuelle dans des humus forestiers in situ. Oecologia 2: 285-324.

Li, Y., Liu, Y.H., Wang, Y.L., Niu, L., Xu, X. & Tian, Y.Q. 2014. Interactive effects of soil temperature and moisture on soil N mineralization in a Stipa krylovii grassland in Inner Mongolia, China. Journal of Arid Land 6(5): 571-580.

Mande, K.H., Abdullah, A.M., Zaharin, A.A. & Ainuddin, A.N. 2014. Drivers of soil carbon dioxide efflux in a 70 years mixed trees species of tropical lowland forest, Peninsular Malaysia. Sains Malaysiana 43(12): 1843-1853.

Neffar, S., Beddiar, A. & Chenchouni, H. 2015. Effects of soil chemical properties and seasonality on mycorrhizal status of prickly pear (Opuntia ficus-indica) planted in hot arid steppe rangelands. Sains Malaysiana 44(5): 671-680.

Olson, J.S. 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44: 322-331.

Origin. v.8.0. OriginLab Corporation. One Roundhouse Plaza, Northampton, MA, 01060 USA.

Qi, G., Wang, Q., Zhou, W., Ding, H., Wang, X., Qi, L., Wang, Y., Li, S. & Dai, L. 2011. Moisture effect on carbon and nitrogen mineralization in topsoil of Changbai Mountain, Northeast China. Journal of Forest Science 57: 340-348.

Rey, A., Petsikos, C., Jarvis, P.G. & Grace, J. 2005. Effect of temperature and moisture on rates of carbon mineralization in a Mediterranean oak forest soil under controlled and field conditions. European Journal of Soil Science 56(5): 589-599.

Schaefer, R. 1967. Characteres et evolution des activites microbiennes dans une chaine de sols hydromorphes mesotrophiques de la plaine d’Alsace. Revue d’Ecologie et de Biologie du Sol 4: 567-592.

Sorensen, L.H. 1974. Rate of decomposition of organic matter in soil as influenced by repeated air drying-rewetting and repeated additions of organic material. Soil Biology and Biochemistry 6: 287292.

Weil, R.R., Islam, K.R., Stine, M.A., Gruver, J.B. & Samson- Liebig, S.E. 2003. Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use. American Journal of Alternative Agriculture 18(1): 3-17.

Yuste, J.C., Baldocchi, D.D., Gershenson, A., Goldstein, A., Misson, L. & Wong, S. 2007. Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture. Global Change Biology 13(9): 2018-2035.

Zengin, E., Sagliker, H.A. & Darici, C. 2008. Carbon mineralization of Acacia cyanophylla soils under the different temperature and humidity conditions. Ekoloji 18(69): 1-6.

 

*Corresponding author; email: nkizildag@cu.edu.tr

 

 

previous